【題目】如圖,在ABC中,∠C90°,AC8,BC6,按下列步驟作圖:①以點(diǎn)A為圓心,適當(dāng)長為半徑畫弧,分別交ACAB于點(diǎn)D,E;②分別以D,E為圓心,DE的長為半徑畫弧,兩弧相交于點(diǎn)F;③作射線AF,交BC于點(diǎn)G,則CG=( 。

A.3B.6C.D.

【答案】D

【解析】

GHABH,如圖,由基本作圖得到AG平分∠CAB,則GHGC,利用勾股定理計(jì)算出AB10,利用ACG≌△AHG得到AHAC8,則BH1082,設(shè)GCx,則BG6x,根據(jù)勾股定理得到22+x2=(6x2,然后解方程即可.

解:作GHABH,如圖,

由作法得AG平分∠CAB,

GCACGHAB,

GHGC

RtABC中,AB10,

易得ACG≌△AHG,

AHAC8,

BH1082,

設(shè)GCx,則BG6x,

RtBGH中,22+x2=(6x2,解得x

CG的長為

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)有研發(fā)、管理和操作三個(gè)小組,各組的日工資和人數(shù)如下表所示.現(xiàn)從管理組分別抽調(diào)1人到研發(fā)組和操作組,調(diào)整后與調(diào)整前相比,下列說法中不正確的是(

A.團(tuán)隊(duì)平均日工資不變B.團(tuán)隊(duì)日工資的方差不變

C.團(tuán)隊(duì)日工資的中位數(shù)不變D.團(tuán)隊(duì)日工資的極差不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)ykx+bk≠0)與反比例函數(shù)ym≠0)的圖象交于第二、四象限A、B兩點(diǎn),過點(diǎn)AADx軸于D,AD4,sinAOD,且點(diǎn)B的坐標(biāo)為(n,﹣2).

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)請直接寫出滿足kx+bx的取值范圍;

3Ey軸上一點(diǎn),且△AOE是等腰三角形,請直接寫出所有符合條件的E點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD,將AMPBPQ分別沿PMPQ折疊(APAM),點(diǎn)A和點(diǎn)B都與點(diǎn)E重合;再將CQD沿DQ折疊,點(diǎn)C落在線段EQ上點(diǎn)F處.

1)判斷AMP,BPQ,CQDFDM中有哪幾對相似三角形?(不需說明理由)

2)如果AM1,sinDMF,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx4經(jīng)過A(﹣3,0),B5,﹣4)兩點(diǎn),與y軸交于點(diǎn)C,連接ABAC,BC

1)求拋物線的表達(dá)式;

2)求ABC的面積;

3)拋物線的對稱軸上是否存在點(diǎn)M,使得ABM是直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC內(nèi)接于⊙O,∠BCA90°,∠CBA60°,AB10,點(diǎn)DAB邊上(異于點(diǎn)AB)的一動點(diǎn),DEAB交⊙O于點(diǎn)E,交AC于點(diǎn)G,交切線CF于點(diǎn)F

1)求證:FCCG;

2)①當(dāng)AE   時(shí),四辺形BOEC為菱形;

②當(dāng)AD   時(shí),OGCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是⊙O的直徑,AB是⊙O的弦,CDAB,垂足為E,連接BCBD.點(diǎn)F為線段CB上一點(diǎn),連接DF,若CE2,AB8,BF,則tanCDF__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以一個(gè)等腰直角三角形的腰為邊分別向形外做等邊三角形,我們把這兩個(gè)等邊三角形重心之間的距離稱作這個(gè)等腰直角三角形的肩心距”.如果一個(gè)等腰直角三角形的腰長為2,那么它的肩心距

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在校園文化藝術(shù)節(jié)中,九年級(1)班有1名男生和2名女生獲得美術(shù)獎,另有2名男生和2名女生獲得音樂獎.

1)從獲得美術(shù)獎和音樂獎的7名學(xué)生中選取1名參加頒獎大會,恰好選到男生是 事件(填隨機(jī)或必然),選到男生的概率是 .

2)分別從獲得美術(shù)獎、音樂獎的學(xué)生中各選取1名參加頒獎大會,用列表或樹狀圖的方法,求剛好是一男生和一女生的概率.

查看答案和解析>>

同步練習(xí)冊答案