【題目】如圖,等邊三角形ABC的頂點(diǎn)在⊙O上,點(diǎn)P是劣弧上的一點(diǎn)(端點(diǎn)除外),延長(zhǎng)BP至點(diǎn)D,使BD=AP,連結(jié)CD.
(1)若AP過(guò)圓心O,如圖①,請(qǐng)你判斷△PDC是什么三角形?并說(shuō)明理由;
(2)若AP不過(guò)圓心O,如圖②,△PDC又是什么三角形?為什么?
【答案】(1)為等邊三角形;(2)仍為等邊三角形
【解析】
試題(1)觀察圖形可得△PDC為等邊三角形,先根據(jù)條件證明△APC≌△BDC得出PC=DC,然后根據(jù)條件證明∠CPD=60°即可得出結(jié)論;(2)利用(1)中方法即可得出結(jié)論.
試題解析:(1)如圖①,△PDC為等邊三角形.(2分)
理由如下:
∵△ABC為等邊三角形
∴AC=BC
∵在⊙O中,∠PAC=∠PBC
又∵AP=BD
∴△APC≌△BDC
∴PC=DC
∵AP過(guò)圓心O,AB=AC,∠BAC=60°
∴∠BAP=∠PAC=∠BAC=30°
∴∠PBC=∠PAC=30°,∠BCP=∠BAP=30°
∴∠CPD=∠PBC+∠BCP=30°+30°=60°
∴△PDC為等邊三角形;(6分)
(2)如圖②,△PDC仍為等邊三角形.(8分)
理由如下:
∵△ABC為等邊三角形
∴AC=BC
∵在⊙O中,∠PAC=∠PBC
又∵AP=BD
∴△APC≌△BDC
∴PC=DC
∵∠BAP=∠BCP,∠PBC=∠PAC
∴∠CPD=∠PBC+∠BCP=∠PAC+∠BAP=60°
∴△PDC為等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,關(guān)于x的二次函數(shù)y=ax2﹣2ax(a>0)的頂點(diǎn)為C,與x軸交于點(diǎn)O、A,關(guān)于x的一次函數(shù)y=﹣ax(a>0).
(1)試說(shuō)明點(diǎn)C在一次函數(shù)的圖象上;
(2)若兩個(gè)點(diǎn)(k,y1)、(k+2,y2)(k≠0,±2)都在二次函數(shù)的圖象上,是否存在整數(shù)k,滿(mǎn)足?如果存在,請(qǐng)求出k的值;如果不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)E是二次函數(shù)圖象上一動(dòng)點(diǎn),E點(diǎn)的橫坐標(biāo)是n,且﹣1≤n≤1,過(guò)點(diǎn)E作y軸的平行線(xiàn),與一次函數(shù)圖象交于點(diǎn)F,當(dāng)0<a≤2時(shí),求線(xiàn)段EF的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說(shuō)法正確的是( )
A. 連續(xù)拋一枚均勻硬幣2次有可能一次正面朝上,2次正面朝上,0次正面朝上
B. 連續(xù)拋一枚均勻硬幣10次,有可能正面都朝上
C. 大量反復(fù)拋一枚均勻硬幣,平均每100次出現(xiàn)正面朝上的次數(shù)不確定;
D. 通過(guò)拋一枚均勻硬幣確定誰(shuí)先發(fā)球的比賽規(guī)則是公平的,
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小波在復(fù)習(xí)時(shí),遇到一個(gè)課本上的問(wèn)題,溫故后進(jìn)行了操作、推理與拓展.
(1)溫故:如圖1,在△ABC中,AD⊥BC于點(diǎn)D,正方形PQMN的邊QM在BC上,頂點(diǎn)P,N分別在AB, AC上,若BC=6,AD=4,求正方形PQMN的邊長(zhǎng).
(2)操作:能畫(huà)出這類(lèi)正方形嗎?小波按數(shù)學(xué)家波利亞在《怎樣解題》中的方法進(jìn)行操作:如圖2,任意畫(huà)△ABC,在AB上任取一點(diǎn)P′,畫(huà)正方形P′Q′M′N(xiāo)′,使Q′,M′在BC邊上,N′在△ABC內(nèi),連結(jié)B N′并延長(zhǎng)交AC于點(diǎn)N,畫(huà)NM⊥BC于點(diǎn)M,NP⊥NM交AB于點(diǎn)P,PQ⊥BC于點(diǎn)Q,得到四邊形PQMN.小波把線(xiàn)段BN稱(chēng)為“波利亞線(xiàn)”.
(3)推理:證明圖2中的四邊形PQMN 是正方形.
(4)拓展:在(2)的條件下,于波利業(yè)線(xiàn)B N上截取NE=NM,連結(jié)EQ,EM(如圖3).當(dāng)tan∠NBM=時(shí),猜想∠QEM的度數(shù),并嘗試證明.
請(qǐng)幫助小波解決“溫故”、“推理”、“拓展”中的問(wèn)題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“重整行裝再出發(fā),馳而不息再爭(zhēng)創(chuàng)”,2018年5月8日蘭州市召開(kāi)了新一輪全國(guó)文明城市創(chuàng)建啟動(dòng)大會(huì).某校為了更好地貫徹落實(shí)創(chuàng)建全國(guó)文明城市目標(biāo),舉辦了“我是創(chuàng)城小主人”的知識(shí)競(jìng)賽.該校七年級(jí)、八年級(jí)分別有300人,現(xiàn)從中各隨機(jī)抽取10名同學(xué)的測(cè)試成績(jī)進(jìn)行調(diào)查分析,成績(jī)?nèi)缦拢?/span>
七年級(jí) | 85 | 65 | 84 | 78 | 100 | 78 | 85 | 85 | 98 | 83 |
八年級(jí) | 96 | 60 | 87 | 78 | 87 | 87 | 89 | 100 | 83 | 96 |
整理、描述數(shù)據(jù):
分?jǐn)?shù)段 | ||||
七年級(jí)人數(shù) | 1 | 2 | 5 | 2 |
八年級(jí)人數(shù) | 1 | 1 | 5 | 3 |
分析數(shù)據(jù):
年級(jí) | 平均數(shù) | 中位數(shù) | 眾數(shù) |
七 | 84.1 | _______ | 85 |
八 | 86.3 | 87 | ______ |
得出結(jié)論:
(1)根據(jù)上述數(shù)據(jù),將表格補(bǔ)充完整;
(2)估計(jì)該校七、八兩個(gè)年級(jí)學(xué)生在本次測(cè)試成績(jī)中可以取得優(yōu)秀的人數(shù)共有多少人?
(3)你認(rèn)為哪個(gè)年級(jí)知識(shí)掌握的總體水平較好,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)接受問(wèn)卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為_______°;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生1800人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí) 達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC是等邊三角形,AB=6,點(diǎn)D,E,F分別在邊AB,BC,AC上,BD:BE=2:3,DE同時(shí)平分∠BEF和∠BDF,則BD的長(zhǎng)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是反比例函數(shù)圖像上的兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),過(guò)點(diǎn)作軸于點(diǎn),交于點(diǎn),延長(zhǎng)交軸于點(diǎn),已知,,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解本校學(xué)生平均每天的體育活動(dòng)時(shí)間情況,隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,并將調(diào)查結(jié)果人數(shù)分為A,B,C,D四個(gè)等級(jí)設(shè)活動(dòng)時(shí)間為t(小時(shí)),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)圖中信息解答下列問(wèn)題:
(1)該校共調(diào)查了多少名學(xué)生;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)求出表示A等級(jí)的扇形圓心角的度數(shù);
(4)在此次問(wèn)卷調(diào)查中,甲班有2人平均每天大課間活動(dòng)時(shí)間不足1小時(shí),乙班有3人平均每天大課間活動(dòng)時(shí)間不足1小時(shí),若從這5人中任選2人去參加座談,試用列表或畫(huà)樹(shù)狀圖的方法求選出的2人來(lái)自不同班級(jí)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com