【題目】如圖,將Rt△ABC繞直角頂點C順時針旋轉(zhuǎn)90°,得到△A1B1C,連結(jié)AA1,若∠AA1B1=15°,則∠B的度數(shù)是 .
【答案】60°
【解析】
試題分析:根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=A1C,然后判斷出△ACA1是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得∠CAA1=45°,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠A1B1C,然后根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠B=∠A1B1C.
解:∵Rt△ABC繞直角頂點C順時針旋轉(zhuǎn)90°得到△A1B1C,
∴AC=A1C,
∴△ACA1是等腰直角三角形,
∴∠CAA1=15°,
∴∠A1B1C=∠1+∠CAA1=15°+45°=60°,
由旋轉(zhuǎn)的性質(zhì)得∠B=∠A1B1C=60°,
故答案為60°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A、B、C、D在一條直線上,BF、CE相交于O,AE=DF,∠E=∠F,OB=OC.
(1)求證:△ACE≌△DBF;
(2)如果把△DBF沿AD折翻折使點F落在點G,連接BE和CG. 求證:四邊形BGCE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D為⊙O上的一點,點C在直徑BA的延長線上,并且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點B作O的切線,交CD的延長線于點E,若BC=12,tan∠CDA=,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超市店慶促銷,某種書包原價每個x元,第一次降價打“八折”,第二次降價每個又減10元,經(jīng)兩次降價后售價為90元,則得到方程( )
A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,歸納計算結(jié)果中的個位數(shù)字的規(guī)律,猜測32015﹣1的個位數(shù)字是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】到三角形三個頂點距離相等的點是( )
A. 三條邊的中線的交點 B. 三條高線的交點
C. 三條邊的垂直平分線的交點 D. 三條角平分線的交點
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com