【題目】如圖,點O是ABC的邊AB上一點,O與邊AC相切于點E,與邊BC,AB分別相交于點D,F(xiàn),且DE=EF.

(1)求證:∠C=90°;

(2)當BC=3,sinA=時,求AF的長.

【答案】(1)見解析(2)

【解析】

(1)連接OE,BE,因為DE=EF,所以=,從而易證∠OEB=DBE,所以OEBC,從可證明BCAC;

(2)設⊙O的半徑為r,則AO=5﹣r,在RtAOE中,sinA=從而可求出

r的值.

(1)連接OE,BE,

DE=EF,

=

∴∠OBE=DBE

OE=OB,

∴∠OEB=OBE

∴∠OEB=DBE,

OEBC

∵⊙O與邊AC相切于點E,

OEAC

BCAC

∴∠C=90°

(2)在ABC,C=90°,BC=3,sinA=,

AB=5,

設⊙O的半徑為r,則AO=5﹣r,

RtAOE中,sinA=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場一種商品的進價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.

(1)若該商品連續(xù)兩次下調相同的百分率后售價降至每件32.4元,求兩次下降的百分率;

(2)經(jīng)調查,若每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應降價多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,平面直角坐標系xOy中,已知拋物線yax2+4xx軸交于O、A兩點.直線ykx+m經(jīng)過拋物線的頂點B及另一點DDA不重合),交y軸于點C

1)當OA4,OC3時.

分別求該拋物線與直線BC相應的函數(shù)表達式;

連結AC,分別求出tanCAO、tanBAC的值,并說明∠CAO與∠BAC的大小關系;

2)如圖2,過點DDEx軸于點E,連接CE.當a為任意負數(shù)時,試探究ABCE的位置關系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線ykx4k+4與拋物線yx2x交于A、B兩點.

1)直線總經(jīng)過定點,請直接寫出該定點的坐標;

2)點P在拋物線上,當k=﹣時,解決下列問題:

在直線AB下方的拋物線上求點P,使得△PAB的面積等于20;

連接OA,OB,OP,作PCx軸于點C,若△POC和△ABO相似,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是菱形ABCD邊上的一動點,它從點A出發(fā)沿著ABCD路徑勻速運動到點D,設PAD的面積為y,P點的運動時間為x,則y關于x的函數(shù)圖象大致為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca0)的圖象如圖所示,則下列結論:(14a+2b+c0;(2)方程ax2+bx+c0兩根都大于零;(3yx的增大而增大;(4)一次函數(shù)yx+bc的圖象一定不過第二象限.其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,直徑AB垂直于弦CD,垂足為E,連結AC,將△ACE沿AC翻轉得到△ACF,直線FC與直線AB相交于點G

1)求證:FG⊙O的切線;

2)若BOG的中點,CE,求⊙O的半徑長;

3求證:∠CAG=∠BCG;

⊙O的面積為GC2,求GB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O的半徑為5,弦AB=8,CD=6,則圖中陰影部分面積為(

A. π–24 B. C. π–12 D. 9π–6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)500名員工參加安全生產(chǎn)知識測試,成績記為AB,C,D,E5個等級,為了解本次測試的成績(等級)情況,現(xiàn)從中隨機抽取部分員工的成績(等級),統(tǒng)計整理并制作了如下的統(tǒng)計圖:

1)求這次抽樣調查的樣本容量,并補全圖;

2)如果測試成績(等級)為A,B,C級的定為優(yōu)秀,請估計該企業(yè)參加本次安全生產(chǎn)知識測試成績(等級)達到優(yōu)秀的員工的總人數(shù).

查看答案和解析>>

同步練習冊答案