精英家教網(wǎng)如圖,矩形ABCD中,AB=6,BC=2
3
,點O是AB的中點,點P在AB的延長線上,且BP=3.一動點E從O點出發(fā),以每秒1個單位長度的速度沿OA勻速運動,到達(dá)A點后,立即以原速度沿AO返回;另一動點F從P點出發(fā),以每秒1個單位長度的速度沿射線PA勻速運動,點E、F同時出發(fā),當(dāng)兩點相遇時停止運動,在點E、F的運動過程中,以EF為邊作等邊△EFG,使△EFG和矩形ABCD在射線PA的同側(cè).設(shè)運動的時間為t秒(t≥0).
(1)當(dāng)?shù)冗叀鱁FG的邊FG恰好經(jīng)過點C時,求運動時間t的值;
(2)在整個運動過程中,設(shè)等邊△EFG和矩形ABCD重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式和相應(yīng)的自變量t的取值范圍;
(3)設(shè)EG與矩形ABCD的對角線AC的交點為H,是否存在這樣的t,使△AOH是等腰三角形?若存在,求出對應(yīng)的t的值;若不存在,請說明理由.
分析:(1)當(dāng)邊FG恰好經(jīng)過點C時,∠CFB=60°,BF=3-t,在Rt△CBF中,解直角三角形可求t的值;
(2)按照等邊△EFG和矩形ABCD重疊部分的圖形特點,分為0≤t<1,1≤t<3,3≤t<4,4≤t<6四種情況,分別寫出函數(shù)關(guān)系式;
(3)存在.當(dāng)△AOH是等腰三角形時,分為AH=AO=3,HA=HO,OH=OA三種情況,分別畫出圖形,根據(jù)特殊三角形的性質(zhì),列方程求t的值.
解答:解:(1)當(dāng)邊FG恰好經(jīng)過點C時,∠CFB=60°,BF=3-t,在Rt△CBF中,BC=2
3
,tan∠CFB=
BC
BF

即tan60°=
2
3
3-t
,即
3
=
2
3
3-t

解得t=1,精英家教網(wǎng)
∴當(dāng)邊FG恰好經(jīng)過點C時,t=1;

(2)如圖1,過點M作MN⊥AB于點N,
當(dāng)0≤t<1時,
∵tan60°=
MN
EN
=
2
3
NE
=
3
,
∴EN=2,
EB=3+t,NB=3+t-2=1+t,
∴MC=1+t,
S=
1
2
(MC+EB)×BC=2
3
t+4
3

精英家教網(wǎng)
如圖2,當(dāng)1≤t<3時,
∵MN=2
3
,EF=OP=6,
∴GH=6×
3
2
=3
3
,
MK
EF
=
GH-MN
GH

∴MK=2,
∵EB=3+t,BF=3-t,BQ=
3
BF=
3
(3-t),
CQ=2
3
-BQ=
3
t-
3
,
∴S=S梯形MKFE-S△QBF=-
3
2
t2+3
3
t+
7
3
2



當(dāng)3≤t<4時,精英家教網(wǎng)
∵MN=2
3
,EF=6-2(t-3)=12-2t,
∴GH=(12-2t)×
3
2
=6
3
-
3
t,
MK
EF
=
GH-MN
GH

∴MK=8-2t,
S=-4
3
t+20
3
;

如圖4,當(dāng)4≤t<6時,
∵EF=12-2t,
高為:EF•sin60°=
3
2
EF,精英家教網(wǎng)
S=
3
t2-12
3
t+36
3
;
綜上所述,S=
2
3
t+4
3
(0≤t<1)
-
3
2
t2+3
3
t+
7
3
2
(1≤t<3)
-4
3
t+20
3
(3≤t<4)
3
t2-12
3
t+36
3
(4≤t<6)


(3)存在.
理由如下:在Rt△ABC中,tan∠CAB=
BC
AB
=
3
3

∴∠CAB=30°,
又∵∠HEO=60°,
∴∠HAE=∠AHE=30°,
∴AE=HE=3-t或t-3,精英家教網(wǎng)
1)當(dāng)AH=AO=3時,(如圖5),過點E作EM⊥AH于M,
則AM=
1
2
AH=
3
2
,
在Rt△AME中,cos∠MAE=
AM
AE
,
即cos30°=
3
2
AE
,
∴AE=
3
,即3-t=
3
或t-3=
3
,
∴t=3-
3
或t=3+
3
,

2)當(dāng)HA=HO時,(如圖6)則∠HOA=∠HAO=30°,精英家教網(wǎng)
又∵∠HEO=60°,
∴∠EHO=90°,EO=2HE=2AE,
又∵AE+EO=3,
∴AE+2AE=3,AE=1,
即3-t=1或t-3=1,
∴t=2或t=4;

3)當(dāng)OH=OA時,(如圖7),則∠OHA=∠OAH=30°,精英家教網(wǎng)
∴∠HOB=60°=∠HEB,
∴點E和點O重合,
∴AE=AO=3,
當(dāng)E剛開始運動時3-t=3,
當(dāng)點E返回O時是:t-3=3,
即3-t=3或t-3=3,t=6(舍去)或t=0;

綜上所述,存在5個這樣的t值,使△AOH是等腰三角形,即t=3-
3
或t=3+
3
或t=2或t=4或t=0.
點評:本題考查了特殊三角形、矩形的性質(zhì),相似三角形的判定與性質(zhì),解直角三角形的有關(guān)知識.關(guān)鍵是根據(jù)特殊三角形的性質(zhì),分類討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AB=6,BC=8,M是BC的中點,DE⊥AM,E是垂足,則△ABM的面積為
 
;△ADE的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AD=a,AB=b,要使BC邊上至少存在一點P,使△ABP、△APD、△CDP兩兩相似,則a、b間的關(guān)系式一定滿足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,矩形ABCD中,AE⊥BD,垂足為E,∠DAE=2∠BAE,則∠CAE=
30
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2008•懷柔區(qū)二模)已知如圖,矩形ABCD中,AB=3cm,BC=4cm,E是邊AD上一點,且BE=ED,P是對角線上任意一點,PF⊥BE,PG⊥AD,垂足分別為F、G.則PF+PG的長為
3
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點,且AF=BE,連結(jié)DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習(xí)冊答案