已知拋物線y=
1
2
x2+px+q與x軸相交于不同的兩點A(x1,0)、B(x2,0)(B在A的精英家教網(wǎng)右邊),又拋物線與y軸相交于C點,且滿足
1
x1
+
1
x2
=
5
4

(1)求證:4p+5q=0;
(2)問是否存在一個圓O',使它經(jīng)過A、B兩點,且與y軸相切于C點?若存在,試確定此時拋物線的解析式及圓心O'的坐標(biāo);若不存在,請說明理由.
分析:(1)由于A、B是拋物線與x軸的兩個交點,根據(jù)韋達(dá)定理即可表示出x1+x2以及x1x2的表達(dá)式,可將已知的x1、x2的倒數(shù)和變形為x1+x2及x1x2的形式,然后代值計算,即可證得所求的結(jié)論.
(2)假設(shè)存在符合條件的⊙O′,那么這個圓必同時經(jīng)過A、B、C三點,根據(jù)切割線定理即可求得q的值,進(jìn)而可確定拋物線的解析式和A、B、C的坐標(biāo).
①當(dāng)A、B在原點的同一側(cè)時,由于⊙O′同時經(jīng)過A、B,則圓心O′必在拋物線的對稱軸上,由此可確定點O′的橫坐標(biāo),而⊙O′與y軸相切于C點,那么O′、C的縱坐標(biāo)相同,即可得到所求的O′坐標(biāo);
②當(dāng)A、B分別位于原點兩側(cè)時,此時⊙O′與y軸相交,因此不存在符合條件的O′.
解答:(1)證明:由已知,∵x1、x2是一元二次方程
1
2
x2+px+q=0的兩個不相等的實數(shù)根,
x1+x2=-2p
x1x2=2q
(3分)
又∵
1
x1
+
1
x2
=
5
4
,
x1+x2
x1x2
=
5
4

-2p
2q
=
5
4
,
∴4p+5q=0.(4分)

(2)答:存在滿足條件的⊙O'.其理由如下:
設(shè)⊙O'滿足條件,則OC是⊙O'的切線,由切割線定理知OC2=OA•OB=|x1x2|.(5分)
又∵拋物線y=
1
2
x2+px+q與y軸交于C點,
∴點C的坐標(biāo)為(0,q),
∴OC=|q|.
∴q2=|2q|,
即q2=±2q.
解得q1=0,q2=2,q3=-2.(6分)
①當(dāng)q=0時,x1•x2=0不滿足題設(shè)條件.(7分)
②當(dāng)q=2時,p=-
5
2
,此時拋物線方程y=
1
2
x2-
5
2
x+2.(8分)
∴點C的坐標(biāo)為(0,2),拋物線的對稱軸為x=
5
2
.(9分)
∵圓心O'在AB的垂直平分線上,O'C⊥y軸,精英家教網(wǎng)
∴圓心O′的坐標(biāo)為(
5
2
,2);(10分)
③當(dāng)q=-2時,p=
5
2
,
此時拋物線為y=
1
2
x2+
5
2
x-2,
∵x1•x2=-4<0,
∴A、B在y軸的兩側(cè).
故過A、B的圓必與y軸相交,不可能相切,
因此q=-2時也不滿足題設(shè)條件.
綜上所述,滿足條件的⊙O′是存在的,它的圓心坐標(biāo)為O′(
5
2
,2),
此時拋物線的解析式為:y=
1
2
x2-
5
2
x+2.(12分)
點評:此題主要考查了根與系數(shù)的關(guān)系、切線的性質(zhì)、切割線定理、二次函數(shù)解析式的確定等知識,同時還考查了分類討論的數(shù)學(xué)思想,難度偏大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線y=-
12
x+2與拋物線y=a (x+2)2相交于A、B兩點,點A在y軸上,M為拋物線的頂點.
(1)請直接寫出點A的坐標(biāo)及該拋物線的解析式;
(2)若P為線段AB上一個動點(A、B兩端點除外),連接PM,設(shè)線段PM的長為l,點P的橫坐標(biāo)為x,請求出l2與x之間的 函數(shù)關(guān)系,并直接寫出自變量x的取值范圍;
(3)在(2)的條件下,線段AB上是否存在點P,使以A、M、P為頂點的三角形是等腰三精英家教網(wǎng)角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線y=ax2+c與x軸交于A、B兩點,與y軸交于C點,直線y=
12
x-2經(jīng)過點B及OC中點E.求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線y=-
1
2
x+1
分別交y軸、x軸于A,B兩點,以線段AB為邊向上作正方形ABCD過點A,D,C的拋物線y=ax2+bx+1與直線的另一交點為點E
(1)點C的坐標(biāo)為
 
;點D的坐標(biāo)為
 
.并求出拋物線的解析式;
(2)若正方形以每秒
5
個單位長度的速度沿射線AB下滑,直至頂點D落在x軸上時停止.設(shè)正方形落在x軸下方部分的面積為S,求S關(guān)于滑行時間t的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍;
(3)在(2)的條件下,拋物線與正方形一起平移,同時停止,求拋物線上C,E兩點間的拋物線弧所掃過的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線y=-
12
x+1
交坐標(biāo)軸于A、B點,以線段AB為邊向上作正方形ABCD,過點A、D、C的拋物線與直線的另一個交點為E.
(1)求點C、D的坐標(biāo)
(2)求拋物線的解析式
(3)若拋物線與正方形沿射線AB下滑,直至點C落在x軸上時停止,求拋物線上C、E兩點間的拋物線所掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:022

已知拋物線+12x-19的頂點的橫坐標(biāo)是3,則a=________.

查看答案和解析>>

同步練習(xí)冊答案