【題目】如圖,在△ABC中,D、E分別是邊AB、AC的中點(diǎn),連接DE,將△ADE沿AB方向平移到△DBF的位置,點(diǎn)D在BC上,已知△ADE的面積為1,則四邊形CEDF的面積是

【答案】2
【解析】解:∵如圖,

將△ADE沿AB方向平移到△DBF的位置,點(diǎn)D在BC上,△ADE的面積為1,
∴SDBF=SADE=1.
∵D,E分別是AB,AC的中點(diǎn),
∴DE∥BC,
∴△ADE∽△ABC,
=( 2 , 即 =( 2= ,
故SABC=4,
∴S四邊形DBCE=3,
∴S四邊形CEDF=S四邊形DBCE﹣SADE=3﹣1=2.
故答案是:2.
【考點(diǎn)精析】掌握平移的性質(zhì)是解答本題的根本,需要知道①經(jīng)過平移之后的圖形與原來的圖形的對(duì)應(yīng)線段平行(或在同一直線上)且相等,對(duì)應(yīng)角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對(duì)應(yīng)點(diǎn)所連的線段平行(或在同一直線上)且相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A、B兩點(diǎn)分別在x軸、y軸上,OA=3,OB=4,連接AB.點(diǎn)P在平面內(nèi),若以點(diǎn)P、A、B為頂點(diǎn)的三角形與△AOB全等(點(diǎn)P與點(diǎn)O不重合),則點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程(k﹣1)x2+2kx+2=0.
(1)求證:無論k為何值,方程總有實(shí)數(shù)根.
(2)設(shè)x1 , x2是方程(k﹣1)x2+2kx+2=0的兩個(gè)根,記S= +x1+x2 , S的值能為2嗎?若能,求出此時(shí)k的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.

(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明,若不成立,請(qǐng)說明理由;
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長(zhǎng)BD交CF于點(diǎn)H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3 時(shí),求線段DH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O與Rt△ABC的斜邊AB相切于點(diǎn)D,與直角邊AC相交于E、F兩點(diǎn),連結(jié)DE,已知∠B=30°,⊙O的半徑為12,弧DE的長(zhǎng)度為4π.

(1)求證:DE∥BC;
(2)若AF=CE,求線段BC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對(duì)角線AC、BD相交成的銳角為60°,若AC=6,BD=8,求ABCD的面積.( ,結(jié)果精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超速行駛是引發(fā)交通事故的主要原因.上周末,小鵬等三位同學(xué)在濱海大道紅樹林路段,嘗試用自己所學(xué)的知識(shí)檢測(cè)車速,觀測(cè)點(diǎn)設(shè)在到公路l的距離為100米的P處.這時(shí),一輛富康轎車由西向東勻速駛來,測(cè)得此車從A處行駛到B處所用的時(shí)間為3秒,并測(cè)得∠APO=60°,∠BPO=45°,試判斷此車是否超過了每小時(shí)80千米的限制速度?(參考數(shù)據(jù): =1.41, =1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且A(﹣1,0).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點(diǎn)M(m,0)是x軸上的一個(gè)動(dòng)點(diǎn),當(dāng)MC+MD的值最小時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班級(jí)45名同學(xué)自發(fā)籌集到1700元資金,用于初中畢業(yè)時(shí)各項(xiàng)活動(dòng)的經(jīng)費(fèi).通過商議,決定拿出不少于544元但不超過560元的資金用于請(qǐng)專業(yè)人士拍照,其余資金用于給每名同學(xué)購(gòu)買一件文化衫或一本制作精美的相冊(cè)作為紀(jì)念品.已知每件文化衫28元,每本相冊(cè)20元.
(1)適用于購(gòu)買文化衫和相冊(cè)的總費(fèi)用為W元,求總費(fèi)用W(元)與購(gòu)買的文化衫件數(shù)t(件)的函數(shù)關(guān)系式.
(2)購(gòu)買文化衫和相冊(cè)有哪幾種方案?為了使拍照的資金更充足,應(yīng)選擇哪種方案,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案