如圖,∠BAC=45º,AD⊥BC于點(diǎn)D,且BD=3,CD=2,則AD的長為 .
6.
解析試題分析:如 圖,過B作BE⊥AC,垂足為E交AD于F,由∠BAC=45°可以得到BE=AE,再根據(jù)已知條件可以證明△AFE≌△BCE,可以得到 AF=BC=10,而∠FBD=∠DAC,又∠BDF=∠ADC=90°,由此可以證明△BDF∽△ADC,所以FD:DC=BD:AD,設(shè)FD長為x,則可建立關(guān)于x的方程,解方程即可求出FD,AD的長.
試題解析:如圖,過B作BE⊥AC,垂足為E交AD于F
∵∠BAC=45°
∴BE=AE,
∵∠C+∠EBC=90°,∠C+∠EAF=90°,
∴∠EAF=∠EBC,
在△AFE與△BCE中,
,
∴△AFE≌△BCE(ASA)
∴AF=BC=BD+DC=10,∠FBD=∠DAC,
又∵∠BDF=∠ADC=90°
∴△BDF∽△ADC
∴FD:DC=BD:AD
設(shè)FD長為x
即x:2=3:(x+5)
解得x=1
即FD=1
∴AD=AF+FD=5+1=6.
考點(diǎn): 1.相似三角形的判定與性質(zhì);2.解一元二次方程-公式法;3.全等三角形的判定與性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
如圖,在△ABC與△ADE中,,要使△ABC與△ADE相似,還需要添加一個(gè)條件,這個(gè)條件可以是_____________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
如圖,長方形ABCD中,AB=4,AD=3,E是邊AB上一點(diǎn)(不與A、B重合),F(xiàn)是邊BC上一點(diǎn)(不與B、C重合).若△DEF和△BEF是相似三角形,則CF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
如圖,已知△ABC是面積為的等邊三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC與DE相交于點(diǎn)F,則△AEF的面積等于 (結(jié)果保留根號(hào))..
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
如圖,△ABC中,點(diǎn)D、E分別在邊AB、AC上,CD平分∠ACB,DE∥BC,若AC=10,AE=4,則BC=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com