【題目】如圖,點A1 , A2依次在y=(x>0)的圖象上,點B1 , B2依次在x軸的正半軸上.若△A1OB1 , △A2B1B2均為等邊三角形,則點B2的坐標為 .
【答案】
【解析】過點A1作A1C⊥OB1 , 垂足為C,
∵△A1OB1為等邊三角形,
∴∠A1OB1=60°,
∴tan60°==,
∴A1C=OC,
設A1的坐標為(m,m),
∵點A1在y=(x>0)的圖象上,
∴m=9,解得m=3,
∴OC=3,
∴OB1=6,
過點A2作A2D⊥B1B2 , 垂足為D.
設B1D=a,
則OD=6+a,A2D=a,
∴A2(6+a,a).
∵A2(6+a,a)在反比例函數(shù)的圖象上,
∴代入y=,得(6+a)a=9,
化簡得a2+6a﹣9=0
解得:a=﹣3±3.
∵a>0,
∴a=﹣3+3.
∴B1B2=﹣6+6,
∴OB2=OB1+B1B2=6,
所以點B2的坐標為(6,0).
故答案是:(6,0).
【考點精析】本題主要考查了等邊三角形的性質(zhì)的相關知識點,需要掌握等邊三角形的三個角都相等并且每個角都是60°才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】定義:如果一個 與 的函數(shù)圖像經(jīng)過平移后能與某反比例函數(shù)的圖像重合,那么稱這個函數(shù)是 與 的“反比例平移函數(shù)”.
例如: 的圖像向左平移2個單位,再向下平移1個單位得到 的圖像,則 是 與 的“反比例平移函數(shù)”.
(1)若矩形的兩邊分別是2cm、3cm,當這兩邊分別增加 cm、 cm后,得到的新矩形的面積為8 ,求 與 的函數(shù)表達式,并判斷這個函數(shù)是否為“反比例平移函數(shù)”.
(2)如圖,在平面直角坐標系中,點O為原點,矩形OABC的頂點A、C的坐標分別為(9,0)、(0,3) .點D是OA的中點,連接OB、CD交于點E,“反比例平移函數(shù)” 的圖像經(jīng)過B、E兩點.則這個“反比例平移函數(shù)”的表達式為;這個“反比例平移函數(shù)”的圖像經(jīng)過適當?shù)淖儞Q與某一個反比例函數(shù)的圖像重合,請寫出這個反比例函數(shù)的表達式 .
(3)在(2)的條件下, 已知過線段BE中點的一條直線 交這個“反比例平移函數(shù)”圖像于P、Q兩點(P在Q的右側),若B、E、P、Q為頂點組成的四邊形面積為16,請求出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O直徑,OD⊥弦BC于點F,且交⊙O于點E,且∠AEC=∠ODB.
(1)判斷直線BD和⊙O的位置關系,并給出證明;
(2)當tan∠AEC= ,BC=8時,求OD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB為邊向外作等邊△ACD、等邊△ABE,EF⊥AB,垂足為F,連接DF,當= 時,四邊形ADFE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC內(nèi)接于⊙O,∠BAC的平分線交⊙O于點D,交BC于點E(BE>EC),且BD=2.過點D作DF∥BC,交AB的延長線于點F.
(1)求證:DF為⊙O的切線;
(2)若∠BAC=60°,DE=,求圖中陰影部分的面積;
(3)若=,DF+BF=8,如圖2,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,體育場內(nèi)一看臺與地面所成夾角為30°,看臺最低點A到最高點B的距離為10,A,B兩點正前方有垂直于地面的旗桿DE.在A,B兩點處用儀器測量旗桿頂端E的仰角分別為60°和15°(仰角即視線與水平線的夾角)
(1)
求AE的長;
(2)已知旗桿上有一面旗在離地1米的F點處,這面旗以0.5米/秒的速度勻速上升,求這面旗到達旗桿頂端需要多少秒?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC中,CA=CB,點O在高CH上,OD⊥CA于點D,OE⊥CB于點E,以O為圓心,OD為半徑作⊙O.
(1)求證:⊙O與CB相切于點E;
(2)如圖2,若⊙O 過點H,且AC=5,AB=6,連結EH,求△BHE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com