【題目】已知,如圖甲,在△ABC中,AE平分∠BAC(∠C>∠B),F(xiàn)為AE上一點,且FD⊥BC于D.
(1)試說明:∠EFD=(∠C﹣∠B);
(2)當F在AE的延長線上時,如圖乙,其余條件不變,(1)中的結(jié)論還成立嗎?請說明理由.
【答案】(1)見詳解;(2)成立,證明見詳解.
【解析】
(1) 根據(jù)三角形內(nèi)角和定理以及角平分線的定義得到∠BAE=∠BAC=(180°﹣∠B﹣∠C)=90°﹣(∠B+∠C),然后根據(jù)三角形的外角的性質(zhì)可以得到∠FEC=∠B+∠BAE,求得∠FEC,再根據(jù)直角三角形的兩個銳角互余即可求得結(jié)論;
(2)根據(jù)(1)可以得到∠AEC=90°+(∠B﹣∠C),根據(jù)對頂角相等即可求得∠DEF,然后利用直角三角形的兩個銳角互余即可求解.
解:(1)∵AE平分∠BAC,
∴∠BAE=∠BAC=(180°﹣∠B﹣∠C)
=90°﹣(∠B+∠C),
∵∠FEC=∠B+∠BAE,
則∠FEC=∠B+90°﹣(∠B+∠C)
=90°+(∠B﹣∠C),
∵FD⊥EC,
∴∠EFD=90°﹣∠FEC,
則∠EFD=90°﹣[90°+(∠B﹣∠C)]
=(∠C﹣∠B);
(2)成立.
證明:同(1)可證:∠AEC=90°+(∠B﹣∠C),
∴∠DEF=∠AEC=90°+(∠B﹣∠C),
∴∠EFD=90°﹣[90°+(∠B﹣∠C)]
=(∠C﹣∠B).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行于x軸的直線AC分別交函數(shù) y=x(x≥0)與 y= x(x≥0)的圖象于 B,C兩點,過點C作y軸的平行線交y=x(x≥0)的圖象于點D,直線DE∥AC交 y=x(x≥0)的圖象于點E,則=( )
A. B. 1 C. D. 3﹣
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面關于x的方程中:①ax2+x+2=0;②3(x-9)2-(x+1)2=1;③x+3=④x2-a=0(a為任意實數(shù);⑤=x-1一元二次方程的個數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明想測量一棵樹的高度,他發(fā)現(xiàn)樹的影子恰好落在地面和一斜坡上;如圖,此時測得地面上的影長為8米,坡面上的影長為4米.已知斜坡的坡角為300,同一時 刻,一根長為l米、垂直于地面放置的標桿在地面上的影長為2米,則樹的高度為【 】
A.米 B.12米 C.米 D.10米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中有兩點A(6,0),B(0,3),如果點C在x軸上(C與A不重合),當點C的坐標為 時,△BOC與△AOB相似.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是由繞點順時針旋轉(zhuǎn)得到的,連結(jié)交斜邊于點,的延長線交于點.
(1)若,,求;
(2)證明:;
(3)設,試探索滿足什么關系時,與是全等三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC 中,∠ABC=90°,∠C=30°,AC 的垂直平分線交 BC 于點 D,交AC 于點 E.
(1)判斷 BE 與△DCE 的外接圓⊙O 的位置關系,并說明理由;
(2)若 BE=,BD=1,求△DCE 的外接圓⊙O 的直徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點N,若sinE=,AK=,求CN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:
學校廣播站要招聘一名播音員,需考查應聘學生的應變能力、知識面、朗讀水平三個項目,決賽中,小文和小明兩位同學的各項成績?nèi)缦卤,評委計算三項測試的平均成績,發(fā)現(xiàn)小明與小文的相同.
測試項目 | 測試成績 | |
小文 | 小明 | |
應變能力 | 70 | 80 |
知識面 | 80 | 72 |
朗誦水平 | 87 | 85 |
(1)評委按應變能力占10%,知識面占40%,朗誦水平占50%計算加權平均數(shù),作為最后評定的總成績,成績高者將被錄用,小文和小明誰將被錄用?
(2)若(1)中應變能力占,知識面占,其中,其它條件都不改變,使另一位選手被錄用,請直接寫出一個你認為合適的的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com