將拋物線y=-4(x-k)2向下平移2個(gè)單位后,與y軸交于點(diǎn)(0,-6),則k的值為


  1. A.
    6
  2. B.
    4
  3. C.
    1
  4. D.
    ±1
D
分析:先根據(jù)拋物線向下平移2個(gè)單位得出拋物線的解析式,把此解析式化為二次函數(shù)的一般形式,再根據(jù)其圖象與y軸相交于(0,-6)即可得到關(guān)于k的一元一次方程,求出k的值即可.
解答:∵拋物線y=-4(x-k)2向下平移2個(gè)單位后的解析式為:y=-4(x-k)2-2,
即y=-4x2+2kx-4k2-2,
又∵與y軸交于點(diǎn)(0,-6),
∴-4k2-2=-6,
解得k=±1.
故選D.
點(diǎn)評:本題考查的是二次函數(shù)的圖象與幾何變換,熟知“上加下減,左加右減”的原則是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

43、將拋物線y=x2+2x-3向左平移4個(gè)單位,再向下平移3個(gè)單位,所得拋物線的函數(shù)表達(dá)式為
y=x2+10x+18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•寧波模擬)在平面直角坐標(biāo)系xOy中,已知二次函數(shù)y1=ax2+3x+c的圖象經(jīng)過原點(diǎn)及點(diǎn)A(1,2),與x軸相交于另一點(diǎn)B.
(1)求:二次函數(shù)y1的解析式及B點(diǎn)坐標(biāo);
(2)若將拋物線y1以x=3為對稱軸向右翻折后,得到一個(gè)新的二次函數(shù)y2,已知二次函數(shù)y2與x軸交于兩點(diǎn),其中右邊的交點(diǎn)為C點(diǎn).點(diǎn)P在線段OC上,從O點(diǎn)出發(fā)向C點(diǎn)運(yùn)動,過P點(diǎn)作x軸的垂線,交直線AO于D點(diǎn),以PD為邊在PD的右側(cè)作正方形PDEF(當(dāng)P點(diǎn)運(yùn)動時(shí),點(diǎn)D、點(diǎn)E、點(diǎn)F也隨之運(yùn)動);
①當(dāng)點(diǎn)E在二次函數(shù)y1的圖象上時(shí),求OP的長.
②若點(diǎn)P從O點(diǎn)出發(fā)向C點(diǎn)做勻速運(yùn)動,速度為每秒1個(gè)單位長度,同時(shí)線段OC上另一個(gè)點(diǎn)Q從C點(diǎn)出發(fā)向O點(diǎn)做勻速運(yùn)動,速度為每秒2個(gè)單位長度(當(dāng)Q點(diǎn)到達(dá)O點(diǎn)時(shí)停止運(yùn)動,P點(diǎn)也同時(shí)停止運(yùn)動).過Q點(diǎn)作x軸的垂線,與直線AC交于G點(diǎn),以QG為邊在QG的左側(cè)作正方形QGMN(當(dāng)Q點(diǎn)運(yùn)動時(shí),點(diǎn)G、點(diǎn)M、點(diǎn)N也隨之運(yùn)動),若P點(diǎn)運(yùn)動t秒時(shí),兩個(gè)正方形分別有一條邊恰好落在同一條直線上(正方形在x軸上的邊除外),求此刻t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將拋物線y=-(x-1)2-2向左平移1個(gè)單位,再向上平移1個(gè)單位,則平移后拋物線的表達(dá)式
y=-x2-1
y=-x2-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將拋物線y=2x2向下平移1個(gè)單位,得到的拋物線是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將拋物線y=-2(x-1)2-2向左平移1個(gè)單位,再向上平移1個(gè)單位,得到的拋物線的表達(dá)式為( 。

查看答案和解析>>

同步練習(xí)冊答案