如圖,在?ABCD中,分別以AB、AD為邊向外作等邊△ABE、△ADF,延長(zhǎng)CB交AE于點(diǎn)G,點(diǎn)G在點(diǎn)A、E之間,連接CE、CF,EF,則以下四個(gè)結(jié)論一定正確的是
①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等邊△;④CG⊥AE.


  1. A.
    只有①②
  2. B.
    只有①②③
  3. C.
    只有③④
  4. D.
    ①②③④
B
分析:根據(jù)題意,結(jié)合圖形,對(duì)選項(xiàng)一一求證,判定正確選項(xiàng).
解答:∵△ABE、△ADF是等邊三角形
∴FD=AD,BE=AB
∵AD=BC,AB=DC
∴FD=BC,BE=DC
∵∠B=∠D,∠FDA=∠ABE
∴∠CDF=∠EBC
∴△CDF≌△EBC,故①正確;
∵∠FAE=∠FAD+∠EAB+∠BAD=60°+60°+(180°-∠CDA)=300°-∠CDA,
∠FDC=360°-∠FDA-∠ADC=300°-∠CDA,
∴∠CDF=∠EAF,故②正確;
同理可得:∠CBE=∠EAF=∠CDF,
∵BC=AD=AF,BE=AE,
∴△EAF≌△EBC,
∴∠AEF=∠BEC,
∵∠AEF+∠FEB=∠BEC+∠FEB=∠AEB=60°,
∴∠FEC=60°,
∵CF=CE,
∴△ECF是等邊三角形,故③正確;
在等邊三角形ABE中,
∵等邊三角形頂角平分線、底邊上的中線、高和垂直平分線是同一條線段
∴如果CG⊥AE,則G是AE的中點(diǎn),∠ABG=30°,∠ABC=150°,題目缺少這個(gè)條件,CG⊥AE不能求證,故④錯(cuò)誤.
故選B.
點(diǎn)評(píng):本題考查了全等三角形的判定、等邊三角形的判定和性質(zhì)、平行四邊形的性質(zhì)等知識(shí),綜合性強(qiáng).考查學(xué)生綜合運(yùn)用數(shù)學(xué)知識(shí)的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AB=
29
,AC=4,BD=10.
問(wèn):(1)AC與BD有什么位置關(guān)系?說(shuō)明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點(diǎn)E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•長(zhǎng)春一模)感知:如圖①,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BA、AD的延長(zhǎng)線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請(qǐng)證明;如果不全等,請(qǐng)說(shuō)明理由.
拓展:如圖③,在?ABCD中,AD=BD,點(diǎn)O是AD邊的垂直平分線與BD的交點(diǎn),點(diǎn)E、F分別在OA、AD的延長(zhǎng)線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•犍為縣模擬)甲題:已知關(guān)于x的一元二次方程x2=2(1-m)x-m2的兩實(shí)數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設(shè)y=x1+x2,當(dāng)y取得最小值時(shí),求相應(yīng)m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點(diǎn)E,BF⊥CD于點(diǎn)F,AC與BE、BF分別交于點(diǎn)G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點(diǎn)O,連接CE,則△CBE的周長(zhǎng)是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習(xí)冊(cè)答案