某種商品每件的進(jìn)價(jià)為30元,在某段時(shí)間內(nèi)若以每件x元出售,可賣出(100-x)件,應(yīng)如何定價(jià)才能使利潤(rùn)最大?

解:設(shè)最大利潤(rùn)為w元,
則w=(x-30)(100-x)=-(x-65)2+1225,
∵-1<0,二次函數(shù)有最大值,
∴定價(jià)是65元時(shí),利潤(rùn)最大.
分析:本題是營(yíng)銷問題,基本等量關(guān)系:利潤(rùn)=每件利潤(rùn)×銷售量,每件利潤(rùn)=每件售價(jià)-每件進(jìn)價(jià).再根據(jù)所列二次函數(shù)求最大值.
點(diǎn)評(píng):本題考查了把實(shí)際問題轉(zhuǎn)化為二次函數(shù),再利用二次函數(shù)的性質(zhì)進(jìn)行實(shí)際應(yīng)用.此題為數(shù)學(xué)建模題,借助二次函數(shù)解決實(shí)際問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

6、某種商品每件的進(jìn)價(jià)為190元,按標(biāo)價(jià)的九折銷售時(shí),利潤(rùn)率為15. 2%.設(shè)這種商品的標(biāo)價(jià)為每件x元,依題意列方程是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、某種商品每件的進(jìn)價(jià)為30元,在某段時(shí)間內(nèi)若以每件x元出售,可賣出(200-x)件,設(shè)這種商品的利潤(rùn)為y元,則y與x的函數(shù)關(guān)系式為
y=-x2+230x-6000
(化成一般式).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、某種商品每件的進(jìn)價(jià)為30元,在某段時(shí)間內(nèi)若以每件x元出售,可賣出(100-x)件,應(yīng)如何定價(jià)才能使利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某種商品每件的進(jìn)價(jià)為250元,按標(biāo)價(jià)的九折銷售時(shí),盈利15.2%,這種商品每件的標(biāo)價(jià)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某種商品每件的進(jìn)價(jià)為160元,按標(biāo)價(jià)的九折銷售時(shí),利潤(rùn)率為20%.設(shè)這種商品的標(biāo)價(jià)為每件x元,那么x滿足的方程是
0.9x-160=160×20%
0.9x-160=160×20%
.[友情提示參考公式:(銷售價(jià)-進(jìn)價(jià))÷進(jìn)價(jià)=利潤(rùn)率].

查看答案和解析>>

同步練習(xí)冊(cè)答案