(2008•福州)如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(1)直接寫出點(diǎn)E、F的坐標(biāo);
(2)設(shè)頂點(diǎn)為F的拋物線交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點(diǎn)M、N,使得四邊形MNFE的周長最小?如果存在,求出周長的最小值;如果不存在,請說明理由.

【答案】分析:(1)△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處,可以知道四邊形ADFB是正方形,因而BF=AB=OC=2,則CF=3-2=1,因而E、F的坐標(biāo)就可以求出.
(2)頂點(diǎn)為F的坐標(biāo)根據(jù)第一問可以求得是(1,2),因而拋物線的解析式可以設(shè)為y=a(x-1)2+2,以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,應(yīng)分EF是腰和底邊兩種情況進(jìn)行討論.
當(dāng)EF是腰,EF=PF時(shí),已知E、F點(diǎn)的坐標(biāo)可以求出EF的長,設(shè)P點(diǎn)的坐標(biāo)是(0,n),根據(jù)勾股定理就可以求出n的值.得到P的坐標(biāo).
當(dāng)EF是腰,EF=EP時(shí),可以判斷E到y(tǒng)軸的最短距離與EF的大小關(guān)系,只有當(dāng)EF大于E到y(tǒng)軸的距離,P才存在.
當(dāng)EF是底邊時(shí),EP=FP,根據(jù)勾股定理就可以得到關(guān)于n的方程,就可以解得n的值.
(3)作點(diǎn)E關(guān)于x軸的對稱點(diǎn)E′,作點(diǎn)F關(guān)于y軸的對稱點(diǎn)F′,連接E′F′,分別與x軸、y軸交于點(diǎn)M,N,則點(diǎn)M,N就是所求點(diǎn).求出線段E′F′的長度,就是四邊形MNFE的周長的最小值.
解答:解:(1)E(3,1);F(1,2).

(2)在Rt△EBF中,∠B=90°,
∴EF=
設(shè)點(diǎn)P的坐標(biāo)為(0,n),其中n>0,
∵頂點(diǎn)F(1,2),
∴設(shè)拋物線解析式為y=a(x-1)2+2(a≠0).
①如圖1,
當(dāng)EF=PF時(shí),EF2=PF2,
∴12+(n-2)2=5.
解得n1=0(舍去);n2=4.
∴P(0,4).
∴4=a(0-1)2+2.
解得a=2.
∴拋物線的解析式為y=2(x-1)2+2
②如圖2,
當(dāng)EP=FP時(shí),EP2=FP2,
∴(2-n)2+1=(1-n)2+9.
解得(舍去)
③當(dāng)EF=EP時(shí),EP=,這種情況不存在.
綜上所述,符合條件的拋物線解析式是y=2(x-1)2+2.

(3)存在點(diǎn)M,N,使得四邊形MNFE的周長最小.
如圖3,作點(diǎn)E關(guān)于x軸的對稱點(diǎn)E′,作點(diǎn)F關(guān)于y軸的對稱點(diǎn)F′,
連接E′F′,分別與x軸、y軸交于點(diǎn)M,N,則點(diǎn)M,N就是所求點(diǎn).
∴E′(3,-1),F(xiàn)′(-1,2),NF=NF′,ME=ME′.
∴BF′=4,BE′=3.
∴FN+NM+ME=F′N+NM+ME′=E′F′=
又∵,
∴FN+MN+ME+EF=5+,此時(shí)四邊形MNFE的周長最小值是
點(diǎn)評:本題主要考查了待定系數(shù)法求函數(shù)解析式,求線段的和最小的問題基本的解決思路是根據(jù)對稱轉(zhuǎn)化為兩點(diǎn)之間的距離的問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年中考數(shù)學(xué)考前沖刺試卷(解析版) 題型:解答題

(2008•福州)如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(1)直接寫出點(diǎn)E、F的坐標(biāo);
(2)設(shè)頂點(diǎn)為F的拋物線交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點(diǎn)M、N,使得四邊形MNFE的周長最小?如果存在,求出周長的最小值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年湖北省黃岡市黃梅縣中考數(shù)學(xué)模擬試卷(13)(解析版) 題型:解答題

(2008•福州)如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(1)直接寫出點(diǎn)E、F的坐標(biāo);
(2)設(shè)頂點(diǎn)為F的拋物線交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點(diǎn)M、N,使得四邊形MNFE的周長最。咳绻嬖,求出周長的最小值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2008•福州)如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(1)直接寫出點(diǎn)E、F的坐標(biāo);
(2)設(shè)頂點(diǎn)為F的拋物線交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點(diǎn)M、N,使得四邊形MNFE的周長最。咳绻嬖,求出周長的最小值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)考前知識點(diǎn)回歸+鞏固 專題13 二次函數(shù)(解析版) 題型:解答題

(2008•福州)如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(1)直接寫出點(diǎn)E、F的坐標(biāo);
(2)設(shè)頂點(diǎn)為F的拋物線交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點(diǎn)M、N,使得四邊形MNFE的周長最?如果存在,求出周長的最小值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省鄂州市一中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2008•福州)如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(1)直接寫出點(diǎn)E、F的坐標(biāo);
(2)設(shè)頂點(diǎn)為F的拋物線交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點(diǎn)M、N,使得四邊形MNFE的周長最?如果存在,求出周長的最小值;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案