【題目】如圖,已知二次函數(shù) 的圖像過點A(-4,3),B(4,4).
(1)求拋物線二次函數(shù)的解析式.
(2)求一次函數(shù)直線AB的解析式.
(3)看圖直接寫出一次函數(shù)直線AB的函數(shù)值大于二次函數(shù)的函數(shù)值的x的取值范圍.
(4)求證:△ACB是直角三角形.
【答案】(1);(2);(3)﹣4﹤x﹤4;(4)見解析
【解析】
(1)由題意把A點或B點坐標代入得到,即可得出拋物線二次函數(shù)的解析式;
(2)根據(jù)題意把A點或B點坐標代入y=kx+b,利用待定系數(shù)法即可求出一次函數(shù)直線AB的解析式;
(3)由題意觀察函數(shù)圖像,根據(jù)y軸方向直線在曲線上方時,進而得出x的取值范圍;
(4)根據(jù)題意求出C點坐標,進而由兩點的距離公式或者是構造直角三角形進行分析求證即可.
解:(1)把A點或B點坐標代入得到,
∴拋物線二次函數(shù)的解析式為:.
(2)把A點或B點坐標代入y=kx+b列出方程組,解得,
得出一次函數(shù)直線AB的解析式為:..
(3)由圖象可以看出:一次函數(shù)直線AB的函數(shù)值大于二次函數(shù)的函數(shù)值的x的取值范圍為:﹣4﹤x﹤4.
(4)由拋物線的表達式得:C點坐標為(-2,0),
由兩點的距離公式或者是構造直角三角形得出,
,,.
∴,
∴△ACB是直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】為更精準地關愛留守學生,某學校將留守學生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學校.某數(shù)學小組隨機調查了一個班級,發(fā)現(xiàn)該班留守學生數(shù)量占全班總人數(shù)的20%,并將調查結果制成如下兩幅不完整的統(tǒng)計圖.
(1)該班共有 名留守學生,B類型留守學生所在扇形的圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計圖補充完整;
(3)已知該校共有2400名學生,現(xiàn)學校打算對D類型的留守學生進行手拉手關愛活動,請你估計該校將有多少名留守學生在此關愛活動中受益?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,分別是兩邊的中點,如果上的所有點都在的內部或邊長,則稱為的中內。缦聢D中是的一條中內弧.
(1)如圖,在中,,,分別是,的中點.畫出的最長的中內弧,并直接寫出此時的長;
(2)在平面直角坐標系中,已知點,,,,,分別是,,的中點.
①若,直接寫出的中內弧所在圓的圓心的縱坐標的取值范圍;
②若在中存在一條中內弧,使得所在圓的圓心在的內部或邊長,直接寫出的取值范圍;
③若在中存在一條中內弧,使得所在圓的圓心在的內部或邊長,則的最小值為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果店銷售一種水果的成本價是5元/千克,在銷售中發(fā)現(xiàn),當這種水果的價格定為7元/千克時,每天可以賣出160千克,在此基礎上,這種水果的單價每提高1元/千克,該水果店每天就會少賣出20千克,設這種水果的單價為元(),
(1)請用含的代數(shù)式表示:每千克水果的利潤 元及每天的銷售量 千克.
(2)若該水果店一天銷售這種水果所獲得的利潤是420元,為了讓利于顧客,單價應定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】書法是我國的文化瑰寶,研習書法能培養(yǎng)高雅的品格.某校為加強書法教學,了解學生現(xiàn)有的書寫能力,隨機抽取了部分學生進行測試,測試結果分為優(yōu)秀、良好、及格、不及格四個等級,分別用A,B,C,D表示,并將測試結果繪制成如圖兩幅不完整的統(tǒng)計圖.
請根據(jù)統(tǒng)計圖中的信息解答以下問題:
(1)本次抽取的學生人數(shù)是 ,扇形統(tǒng)計圖中A所對應扇形圓心角的度數(shù)是 .
(2)把條形統(tǒng)計圖補充完整.
(3)若該學校共有2800人,等級達到優(yōu)秀的人數(shù)大約有多少?
(4)A等級的4名學生中有3名女生1名男生,現(xiàn)在需要從這4人中隨機抽取2人參加電視臺舉辦的“中學生書法比賽”,請用列表或畫樹狀圖的方法,求被抽取的2人恰好是1名男生1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)學習函數(shù)的經驗,探究函數(shù)y=x2+ax﹣4|x+b|+4(b<0)的圖象和性質:
(1)下表給出了部分x,y的取值;
x | L | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | L |
y | L | 3 | 0 | ﹣1 | 0 | 3 | 0 | ﹣1 | 0 | 3 | L |
由上表可知,a= ,b= ;
(2)用你喜歡的方式在坐標系中畫出函數(shù)y=x2+ax﹣4|x+b|+4的圖象;
(3)結合你所畫的函數(shù)圖象,寫出該函數(shù)的一條性質;
(4)若方程x2+ax﹣4|x+b|+4=x+m至少有3個不同的實數(shù)解,請直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年,我國海關總署嚴厲打擊“洋垃圾”違法行動,堅決把“洋垃圾”拒于國門之外.如圖,某天我國一艘海監(jiān)船巡航到A港口正西方的B處時,發(fā)現(xiàn)在B的北偏東60°方向,相距150海里處的C點有一可疑船只正沿CA方向行駛,C點在A港口的北偏東30°方向上,海監(jiān)船向A港口發(fā)出指令,執(zhí)法船立即從A港口沿AC方向駛出,在D處成功攔截可疑船只,此時D點與B點的距離為75海里.
(1)求B點到直線CA的距離;
(2)執(zhí)法船從A到D航行了多少海里?(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD內接于圓,對角線AC與BD相交于點E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC .
(1)若∠DFC=40,求∠CBF的度數(shù).
(2)求證: CD⊥DF .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點P位于等邊△ABC的內部,且∠ACP=∠CBP.
(1)延長BP至點D,使得PD=PC,連接AD,CD.
①依題意,補全圖形;
②證明:AD+CD=BD;
(2)在(1)的條件下,若BD的長為2,求四邊形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com