【題目】某學(xué)!绑w育課外活動興趣小組”,開設(shè)了以下體育課外活動項目:A.足球 B.乒乓球C.羽毛球 D.籃球,為了解學(xué)生最喜歡哪一種活動項目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

(1)這次被調(diào)查的學(xué)生共有人,在扇形統(tǒng)計圖中“D”對應(yīng)的圓心角的度數(shù)為;
(2)請你將條形統(tǒng)計圖補(bǔ)充完整;
(3)在平時的乒乓球項目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加市里組織的乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答).

【答案】
(1)200,72°
(2)解:C類人數(shù)為200﹣80﹣20﹣40=60(人),

完整條形統(tǒng)計圖為:


(3)解:

由上圖可知,共有12種等可能的結(jié)果,其中恰好選中甲、乙兩位同學(xué)的結(jié)果有2種.

所以P(恰好選中甲、乙兩位同學(xué))= =


【解析】解:(1)20÷ =200,

所以這次被調(diào)查的學(xué)生共有200人,

在扇形統(tǒng)計圖中“D”對應(yīng)的圓心角的度數(shù)= ×360°=72°;

所以答案是200,72°;

【考點(diǎn)精析】掌握扇形統(tǒng)計圖和條形統(tǒng)計圖是解答本題的根本,需要知道能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人共同計算一道整式乘法題:(2x+a)(3x+b).甲由于把第一個多項式中的“+a”看成了“﹣a”,得到的結(jié)果為6x2+11x10;乙由于漏抄了第二個多項式中x的系數(shù),得到的結(jié)果為2x29x+10

(1)a、b的值.

(2)計算這道乘法題的正確結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,同學(xué)們探究下面命題的正確性,頂角為36°的等腰三角形我們稱之為黃金三角形,黃金三角形具有一種特性,即經(jīng)過它某一頂點(diǎn)的一條直線可以把它分成兩個小等腰三角形,為此,請你,解答問題:

1)已知如圖1:黃金三角形△ABC中,∠A=36°,直線BD平分∠ABCAC于點(diǎn)D,求證:△ABD和△DBC都是等腰三角形;

2)如圖,在△ABC中,AB=AC,∠A=36°,請你設(shè)計三種不同的方法,將△ABC分割成三個等腰三角形,不要求寫出畫法,不要求證明,但是要標(biāo)出所分得的每個三角形的各內(nèi)角的度數(shù).

3)已知一個三角形可以被分成兩個等腰三角形,若原三角形的一個內(nèi)角為36°,求原三角形的最大內(nèi)角的所有可能值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】描點(diǎn)畫圖是探究未知函數(shù)圖象變化規(guī)律的一個重要方法,下面是通過描點(diǎn)畫圖感知函數(shù)圖象的變化規(guī)律的過程:

1)如表是________________的幾組對應(yīng)值,則:m________;

2)根據(jù)表中的數(shù)據(jù),在平面直角坐標(biāo)系中描出還未描出的點(diǎn),并畫出該函數(shù)的圖象:

3)從函數(shù)圖象可以看出,當(dāng)________時,________隨著________的增大而________(填增大或減。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD△ABC的角平分線,點(diǎn)OAB的中點(diǎn),連接DO并延長到點(diǎn)E,使OE=OD,連接AE,BE

1)求證:四邊形AEBD是矩形;

2)當(dāng)△ABC滿足什么條件時,矩形AEBD是正方形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:
如圖,拋物線y= x2 x﹣4與x軸交與A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸交于點(diǎn)C,連接BC,以BC為一邊,點(diǎn)O為對稱中心作菱形BDEC,點(diǎn)P是x軸上的一個動點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q.

(1)求點(diǎn)A,B,C的坐標(biāo).
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動時,直線l分別交BD,BC于點(diǎn)M,N.試探究m為何值時,四邊形CQMD是平行四邊形,此時,請判斷四邊形CQBM的形狀,并說明理由.
(3)當(dāng)點(diǎn)P在線段EB上運(yùn)動時,是否存在點(diǎn)Q,使△BDQ為直角三角形?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,的平分線交于點(diǎn)E,交的延長線于F,以為鄰邊作平行四邊形。

1)證明平行四邊形是菱形;

2)若,連結(jié),①求證:;②求的度數(shù);

(3)若,,,M的中點(diǎn),求的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠D=∠C=90°,EDC的中點(diǎn),AE平分∠DAB,∠DEA=28°,則∠ABE的度數(shù)是__________

查看答案和解析>>

同步練習(xí)冊答案