【題目】如圖,正方形ABCD中,點 E、F 分別在邊 BC、CD 上,且 BE=CF.連接 AE、BF.下列結論錯誤的是()
A. AE=BF B. AE⊥BF C. ∠DAE=∠BFC D. ∠AEB+∠BFC=1200
【答案】D
【解析】根據(jù)正方形的性質(zhì)可以證明△ABE≌△BCF,可以得出AE=BF,∠BAE=∠CBF,再由直角三角形的性質(zhì)就可以得出∠BGE=90°,由∠BAE+∠AEB=90°,∠CBF+∠AEB=90°可得∠DAE=∠BFC,無法說明∠AEB+∠BFC=120°.
A.∵四邊形ABCD是正方形,
∴AB=BC=CD,∠ABC=∠BCD=90°.
在△ABE與△BCF中
AB=BC,∠ABE=∠BCF,BE=CF
∴△ABE≌△BCF(SAS)
∴AE=BF;
故A正確;
(2)由△ABE≌△BCF
∴∠BAE=∠CBF.
∵∠ABE=90°
∴∠BAE+∠AEB=90°
∴∠CBF+∠AEB=90°
∴∠BGE=90°
∴AE⊥BF.
故B正確;
C. ∵∠BAE=∠CBF,
∠BAE+∠AEB=90°,∠CBF+∠AEB=90°,
∴∠DAE=∠BFC,
故C正確;
D.無法說明∠AEB+∠BFC=120°,故D不正確;
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】今年某月的月歷上圈出了相鄰的三個數(shù)a、b、c,并求出了它們的和為39,這三個數(shù)在月歷中的排布不可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2﹣mx﹣3(m>0)交y軸于點C,CA⊥y軸,交拋物線于點A,點B在拋物線上,且在第一象限內(nèi),BE⊥y軸,交y軸于點E,交AO的延長線于點D,BE=2AC.
(1)用含m的代數(shù)式表示BE的長.
(2)當m= 時,判斷點D是否落在拋物線上,并說明理由.
(3)若AG∥y軸,交OB于點F,交BD于點G.
①若△DOE與△BGF的面積相等,求m的值.
②連結AE,交OB于點M,若△AMF與△BGF的面積相等,則m的值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù) ,下列結論中,不正確的是( )
A.圖象必經(jīng)過點(1,2)
B.y隨x的增大而增大
C.圖象在第一、三象限內(nèi)
D.若x>1,則0<y<2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別是兩根木桿及其影子的圖形.
(1)哪個圖形反應了陽光下的情形?哪個圖反映了路燈下的情形?
(2)請你畫出圖中表示小樹影長的線段.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解下列一元一次方程:
(1)0.5x﹣0.7=6.5﹣1.3x (2)1﹣2(2x+3)=﹣3(2x+1)
(3)5(x+8)=6(2x﹣7)+5; (4)5﹣=x
(5)﹣=1 (6)﹣=﹣1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com