【題目】如圖,BD 是菱形ABCD 的對(duì)角線,A30°

(1)請(qǐng)用尺規(guī)作圖法,AB 的垂直平分線EF,垂足為E,AD F;(不要 求寫作法,保留作圖痕跡)

(2)(1)的條件下,連接BF,求∠DBF 的度數(shù).

【答案】1)見解析;(245°

【解析】

1)分別以AB為圓心,大于長(zhǎng)度為半徑畫弧,交于線段AB兩側(cè),連接兩個(gè)交點(diǎn)的直線即為所求;

2)根據(jù)菱形的性質(zhì)可以求出∠ABD的度數(shù),再根據(jù)FA=FB可得出∠A=∠FBA30°,再用∠ABD,即可得出∠DBF的度數(shù).

:1)如圖所示,直線EF 即為所求;

2)∵四邊形ABCD 是菱形,

∴∠ABD=∠DBC, DACB,

∴∠ABC+∠A180°.

∵∠A30°,

∴∠ABC150°.

∴∠ABD=∠DBC75°

EF 垂直平分線段AB,

AFFB

∴∠A=∠FBA30°.

∴∠DBF=∠ABD-∠FBA75°30°45°.

故答案為(1)見解析;(245°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩會(huì)期間,記者隨機(jī)抽取參會(huì)的部分代表,對(duì)他們某天發(fā)言的次數(shù)進(jìn)行了統(tǒng)計(jì),其結(jié)果如表,并繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:

發(fā)言次數(shù)n

A

0≤n3

B

3≤n6

C

6≤n9

D

9≤n12

E

12≤n15

F

15≤n18

1)求得樣本容量為   ,并補(bǔ)全直方圖;

2)如果會(huì)議期間組織1700名代表參會(huì),請(qǐng)估計(jì)在這一天里發(fā)言次數(shù)不少于12次的人數(shù);

3)已知A組發(fā)表提議的代表中恰有1為女士,E組發(fā)表提議的代表中只有2位男士,現(xiàn)從A組與E組中分別抽一位代表寫報(bào)告,請(qǐng)用列表法或畫樹狀圖的方法,求所抽的兩位代表恰好都是男士的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出如下定義:對(duì)于⊙O的弦MN和⊙O外一點(diǎn)PM,O,N三點(diǎn)不共線,且點(diǎn)P,O在直線MN的異側(cè)),當(dāng)∠MPN+∠MON180°時(shí),則稱點(diǎn)P是線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn).圖1是點(diǎn)P為線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn)的示意圖.

在平面直角坐標(biāo)系xOy中,⊙O的半徑為1

1)如圖2,已知M),N,﹣),在A1,0),B11),C0)三點(diǎn)中,是線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn)的是   

2)如圖3,M01),N,﹣),點(diǎn)D是線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn).

①∠MDN的大小為   ;

②在第一象限內(nèi)有一點(diǎn)Emm),點(diǎn)E是線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn),判斷△MNE的形狀,并直接寫出點(diǎn)E的坐標(biāo);

③點(diǎn)F在直線y=﹣x+2上,當(dāng)∠MFN≥∠MDN時(shí),求點(diǎn)F的橫坐標(biāo)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形 ABCD 中,P BA 延長(zhǎng)線上一點(diǎn),且PDA 0 45.點(diǎn) A,點(diǎn) E 關(guān)于 DP 對(duì)稱,連接 ED,EP ,并延長(zhǎng) EP 交射線CB 于點(diǎn) F ,連接 DF .

1)請(qǐng)按照題目要求補(bǔ)全圖形.

2)求證:∠EDF=CDF

3)求∠EDF(含有 的式子表示)

4)過 P PHDP DF 于點(diǎn) H ,連接 BH 猜想 AP BH 的數(shù)量關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,點(diǎn)DE分別為AB,AC的中點(diǎn),連接DE,將△ADE繞點(diǎn)E旋轉(zhuǎn)180°,得到△CFE,連接AFCD

1)四邊形ADCF是什么特殊的四邊形?說明理由;

2)若BC=8,AC=6,求四邊形ABCF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形OBCD的邊ODOB分別在x軸和y軸上,且B (08)D(10,0).點(diǎn)EDC邊上一點(diǎn),將矩形OBCD沿過點(diǎn)O的射線OE折疊,使點(diǎn)D恰好落在BC邊上的點(diǎn)A處.

1)若拋物線yax2+bx經(jīng)過點(diǎn)AD,求此拋物線的解析式;

2)若點(diǎn)M是(2)中拋物線對(duì)稱軸上的一點(diǎn),是否存在點(diǎn)M,使AME為等腰三角形?若存在,直接寫出點(diǎn)M的坐標(biāo);若不存在,說明理由;

3)如圖2,動(dòng)點(diǎn)P從點(diǎn)O出發(fā)沿x軸正方向以每秒1個(gè)單位的速度向終點(diǎn)D運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā)沿折線DCA以同樣的速度運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),當(dāng)一點(diǎn)運(yùn)動(dòng)到終點(diǎn)時(shí),另一點(diǎn)也隨之停止,過動(dòng)點(diǎn)P作直線1x軸,依次交射線OAOE于點(diǎn)F,G,設(shè)運(yùn)動(dòng)時(shí)間為t(秒),QFG的面積為S,求St的函數(shù)關(guān)系式,并直接寫出t的取值范圍.(t的取值應(yīng)保證QFG的存在)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是某品牌訂書機(jī),其截面示意圖如圖2所示.訂書釘放置在軌槽CD內(nèi)的MD處,由連接彈簧的推動(dòng)器MN推緊,連桿EP一端固定在壓柄CF上的點(diǎn)E處,另一端PDM上移動(dòng).當(dāng)點(diǎn)P與點(diǎn)M重合后,拉動(dòng)壓柄CF會(huì)帶動(dòng)推動(dòng)器MN向點(diǎn)C移動(dòng).使用時(shí),壓柄CF的端點(diǎn)F與出釘口D重合,紙張放置在底座AB的合適位置下壓完成裝訂(即點(diǎn)D與點(diǎn)H重合).已知CAAB,CA2cmAH12cm,CE5cm,EP6cm,MN2cm

1)求軌槽CD的長(zhǎng)(結(jié)果精確到0.1);

2)裝入訂書釘需打開壓柄FC,拉動(dòng)推動(dòng)器MN向點(diǎn)C移動(dòng),當(dāng)∠FCD53°時(shí),能否在ND處裝入一段長(zhǎng)為2.5cm的訂書釘?(參考數(shù)據(jù):≈2.24≈6.08,sin53°≈0.80cos53°≈0.60

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBC

1)如圖1,ABAC,點(diǎn)EAB上一點(diǎn),∠BEC=∠ACD

①求證:ABBCADBE

②連接BDCEF,試探究CFCE的數(shù)量關(guān)系,并證明;

2)如圖2,若AB≠AC,點(diǎn)MCD上,cosDACcosBMA,ACCD3MC,ADBC12,直接寫出BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校組織“校園詩(shī)詞大會(huì)”,全校學(xué)生參加初賽,為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了部分學(xué)生的成績(jī)(滿分100分),整理得到如下不完整的統(tǒng)計(jì)圖表:

組別

成績(jī)x

頻數(shù)(人數(shù))

頻率

1

50x60

6

0.12

2

60x70

0.16

3

70x80

14

a

4

80x90

b

5

90x100

10

請(qǐng)根據(jù)圖表中所提供的信息回答下列問題:

1)統(tǒng)計(jì)表中a  ,b 

2)請(qǐng)將統(tǒng)計(jì)圖表補(bǔ)充完整;

3)根據(jù)調(diào)查結(jié)果,請(qǐng)估計(jì)該校1200名學(xué)生中,成績(jī)不低于80分的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案