證明:(1)取AD的中點H,連接HM,
∵四邊形ABCD是正方形,M為AB的中點,
∴BM=HD=AM=AH,
∴△AMH為等腰直角三角形,
∴∠DHM=135°,
而BN是∠CBE的平分線.
∴∠MBN=135°,
∴∠DHM=∠MBN,
又∵DM⊥MN,
∴∠NMB+∠AMD=90°,
又∵∠HDM+∠AMD=90°,
∴∠BMN=∠HDM,
,
∴△DHM≌△MBN(ASA),
∴DM=MN;
(2)DM=MN仍成立.
如圖1,在AD上取一點H,使DH=MB,連接HM,
∵四邊形ABCD是正方形,BN平分∠CBE,DM⊥MN,
∴∠MBN=135°,
∵AH=AM,
∴∠AHM=45°
∴∠DHM=135°,
∠BMN+∠AMD=90°,∠HDM+∠AMD=90°,
∴∠BMN=∠HDM,
∴△DHM≌△MBN,
∴DM=MN.
如圖2,若點M在AB的延長線上,
則在AD延長線上取點H,使DH=BM,連接HM.
∵DM⊥MN,即∠DMN=90°,
∴∠DMA+∠NME=90°,
又∵∠DMA+∠ADM=90°,
∴∠NME=∠ADM,
∴∠MDH=∠NMB(等角的鄰補角相等),
又∵BN為∠CBE的平分線,且∠CBE=90°,
∴∠NBM=45°,
∵AD=AB,DH=BM,
∴AD+DH=AB+BM,即AH=AM,且∠A=90°,
∴△AMH為等腰直角三角形,
∴∠MHD=45°,
∴∠MHD=∠NBM,
又∵DH=BM,∠MDH=∠NMB,
∴△DHM≌△MBN(ASA),
∴DM=MN.
分析:(1)取AD的中點H,連接HM,則BM=HD,由已知可推出∠DHM=∠MBN,∠BMN=∠HDM,從而利用ASA判定△DHM≌△MBN,從而得到DM=MN;
(2)在AD上取一點H,使DH=MB,連接HM,同理可證:△DHM≌△MBN,所以DM=MN;
點評:此題主要考查了學生對角平分線的性質,正方形的性質及全等三角形的判定等知識點的綜合運用.