【題目】綜合與實(shí)踐
如圖,根據(jù)給出的數(shù)軸,解答下面的問題:
(1)已知點(diǎn)表示的數(shù)分別為6,-4,觀察數(shù)軸,與點(diǎn)距離為5的點(diǎn)所表示的數(shù)是 ,兩點(diǎn)之間的距離為 ;
(2)若點(diǎn)到點(diǎn),點(diǎn)的距離相等,觀察數(shù)軸并結(jié)合所學(xué)知識(shí)求點(diǎn)表示的數(shù);
(3)在(2)的條件下,若動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.則點(diǎn)表示的數(shù)是多少(用含字母的式子表示);當(dāng)等于多少秒時(shí),之間的距離為3個(gè)單位長(zhǎng)度.
【答案】(1)1或-9,10;(2)點(diǎn)表示的數(shù)為1;(3)1或4
【解析】
(1)分在點(diǎn)B左邊和右邊兩種情況考慮;兩點(diǎn)之間的距離為點(diǎn)A表示的數(shù)-點(diǎn)B表示的數(shù);
(2)分別表示出B、C兩點(diǎn)之間的距離和C、A兩點(diǎn)之間的距離,據(jù)此列出方程求解;
(3)先表示出點(diǎn)P運(yùn)動(dòng)的路程為2t,于是可以表示點(diǎn)表示的數(shù);分“點(diǎn)在點(diǎn)的左邊和點(diǎn)在點(diǎn)的右邊”兩種情況列方程求解.
解:(1)與點(diǎn)距離為5的點(diǎn)所表示的數(shù)是-4+5=1或-4-5=-9.
兩點(diǎn)之間的距離為6-(-4)=10;
故答案是:1或-9,10;
(2)觀察數(shù)軸,可知點(diǎn)一定在點(diǎn)與點(diǎn)之間,設(shè)點(diǎn)表示的數(shù)為,
則有
解方程,得
即點(diǎn)表示的數(shù)為1.
(3)點(diǎn)表示的數(shù)是.
依題意得:當(dāng)點(diǎn)在點(diǎn)的左邊時(shí),,即,則;
當(dāng)點(diǎn)在點(diǎn)的右邊時(shí),,即,則.
綜上所述,當(dāng)等于1或4秒時(shí),之間的距離為3個(gè)單位長(zhǎng)度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩地相距400千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地的路程y(千米)與所用時(shí)間x(小時(shí))之間的函數(shù)關(guān)系,折線BCD表示轎車離甲地的路程y(千米)與x(小時(shí))之間的函數(shù)關(guān)系,根據(jù)圖象解答下列問題:
(1)求線段CD對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)求E點(diǎn)的坐標(biāo),并解釋E點(diǎn)的實(shí)際意義;
(3)若已知轎車比貨車晚出發(fā)2分鐘,且到達(dá)乙地后在原地等待貨車,則當(dāng)x= 小時(shí),貨車和轎車相距30千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知D,E分別為邊BC,AD的中點(diǎn),且S△ABC=4 cm2,則△BEC的面積為( )
A. 2 cm2 B. 1 cm2 C. 0.5 cm2 D. 0.25 cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機(jī)小王星期天上午營(yíng)運(yùn)時(shí)是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接八位乘客的行車?yán)锍蹋▎挝唬?/span>):-3,+6,-1,-2,+4,-2,+5,-4.
問:(1)將最后一位乘客送到目的地時(shí),小王在什么位置?
(2)若汽車耗油量為,這天上午小王接送乘客,出租車共耗油多少升?
(3)若出租車的起步價(jià)為8元,起步里程為(包括),超過部分每千米1.5元,則小王這天上午共得車費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王叔叔在太原市小店區(qū)買了一套商品房,他準(zhǔn)備用1萬元將地面鋪上地磚,這套住宅的建筑平面圖(由多個(gè)長(zhǎng)方形組成)如圖所示(圖中長(zhǎng)度單位:),請(qǐng)據(jù)圖解答下列問題.
(1)用含的代數(shù)式表示這所住宅的總面積;
(2)某公司地磚報(bào)價(jià)為每平米200元,若,在現(xiàn)有條件下,王叔叔是否會(huì)選擇該公司鋪地磚?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)P、Q分別是等邊△ABC邊AB、BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A、點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的運(yùn)動(dòng)速度相同,連接AQ、CP交于點(diǎn)M.
(1)求證:△ABQ≌△CAP;
(2)當(dāng)點(diǎn)P、Q分別在AB、BC邊上運(yùn)動(dòng)時(shí),∠QMC變化嗎?若變化,請(qǐng)說明理由;若不變,求出它的度數(shù).
(3)如圖2,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則∠QMC變化嗎?若變化,請(qǐng)說明理由;若不變,直接寫出它的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的推理.
已知:如圖,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.
試說明:∠EGF=90°.
解:因?yàn)?/span>HG∥AB(已知),
所以∠1=∠3( ).
又因?yàn)?/span>HG∥CD(已知),
所以∠2=∠4( ).
因?yàn)?/span>AB∥CD(已知),
所以∠BEF+ =180°( ).
又因?yàn)?/span>EG平分∠BEF(已知),
所以∠1=∠ ( ).
又因?yàn)?/span>FG平分∠EFD(已知),
所以∠2=∠ ( ),
所以∠1+∠2=( + ).
所以∠1+∠2=90°.
所以∠3+∠4=90°( ),即∠EGF=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,以點(diǎn)為圓心,8為半徑的圓與軸交于,兩點(diǎn),過作直線與軸負(fù)方向相交成的角,且交軸于點(diǎn),以點(diǎn)為圓心的圓與軸相切于點(diǎn).
(1)求直線的解析式;
(2)將以每秒1個(gè)單位的速度沿軸向左平移,當(dāng)第一次與外切時(shí),求平移的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B,F,C,E在直線l上(F,C之間不能直接測(cè)量),點(diǎn)A,D在l異側(cè),測(cè)得AB=DE,AC=DF,BF=EC.
(1)求證:△ABC≌△DEF;
(2)指出圖中所有平行的線段,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com