【探究發(fā)現(xiàn)】
按圖中方式將大小不同的兩個正方形放在一起,分別求出陰影部分(⊿ACF)的面積。(單位:厘米,陰影部分的面積依次用S1、S2、S3表示)
1.S1=          cm2;     S2=          cm2;          S3=          cm2.
2.歸納總結(jié)你的發(fā)現(xiàn):

【推理反思】
按圖中方式將大小不同的兩個正方形放在一起,設(shè)小正方形的邊長是bcm,大正方形的邊長是acm,求:陰影部分(⊿ACF)的面積。

【應(yīng)用拓展】
1.按上圖方式將大小不同的兩個正方形放在一起,若大正方形的面積是80cm2,則圖中陰影三角形的面積是          cm2.
2.如圖(1),C是線段AB上任意一點,分別以AC、BC為邊在線段AB同側(cè)構(gòu)造等邊三角形⊿ACD和等邊三角形⊿CBE,若⊿CBE的邊長是1cm,則圖中陰影三角形的面積是                        cm2.
3.如圖(2),菱形ABCD和菱形ECGF的邊長分別為2和3,∠A=120°,則圖中陰影部分的面積是   

(1)                      (2)

見解析

解析試題分析:
【探索發(fā)現(xiàn)】如圖補全圖形,是一個大長方形減去三個三角形,其余兩個一樣.經(jīng)過計算可以總結(jié)出陰影部分的面積等于大正方形的面積的一半.

【推理反思】同上
【應(yīng)用拓展】(1)由探索發(fā)現(xiàn)的總結(jié)得陰影部分的面積等于大正方形的面積的一半.
(2)由于⊿ACD和⊿CBE是等邊三角形,所以CD//BE,即△DBE和△CBE以BE為底且高相等,求出△CBE的面積就是△DBE的面積了.
(3)設(shè)BF與CE相交于點G,利用相似三角形對應(yīng)邊成比例列式求出CG,再求出DG的長,然后求出兩個菱形的高,再根據(jù)三角形的面積公式列式計算即可得解.
試題解析:【探索發(fā)現(xiàn)】
解:(1)S1=12×10    ="120" 8 12 50=50
S2=14×10   ="140" 12 28 50=50
S3=18×10   ="180" 8 72 50=50
(2)歸納發(fā)現(xiàn):陰影部分的面積等于大正方形面積的一半.
【推理反思】
解:S△AFC="a(a+b)"   = =
【應(yīng)用拓展】解:(1)==40
(2)∵⊿ACD和⊿CBE是等邊三角形
∴∠ACD=∠CBE=60°
∴CD//BE
因此,△DBE和△CBE以BE為底的高相等
∴S△DBE=S△CBE=1
(3)如圖,設(shè)BF與CE相交于點G,在菱形ECGF中,CE∥GF,
∴△BCG∽△BGF,
 = ,即 ,
解得CG=,
∴DG="CD" CG="2" =
∵菱形ABCD和菱形ECGF的邊長分別為3和4,∠A=120°,
∴菱形ABCD的CD邊上的高為, 菱形ECGF的CE邊長的高為
∴圖中陰影部分的面積=
考點:1.組合圖形的面積;2.菱形的性質(zhì)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

如圖①,正方形ABCD中,點A、B的坐標分別為(0,10),(8,4),點C在第一象限.動點P在正方形ABCD的邊上,從點A出發(fā)沿A?B?C?D勻速運動,同時動點Q以相同速度在x軸正半軸上運動,當P點到達D點時,兩點同時停止運動,設(shè)運動的時間為t秒.

(1)當P點在邊AB上運動時,點Q的橫坐標x(長度單位)關(guān)于運動時間t(秒)的函數(shù)圖象如圖②所示,請寫出點Q開始運動時的坐標及點P運動速度;
(2)求正方形邊長及頂點C的坐標;
(3)如果點P、Q保持原速度不變,當點P沿A?B?C?D勻速運動時,OP與PQ能否相等?若能,求出所有符合條件的t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

(如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上).

(1)若△CEF與△ABC相似.
①當AC=BC=2時,AD的長為_________;
②當AC=3,BC=4時,AD的長為_________
(2)當點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在△ABC中,AB="AC=" 5,BC= 8,D,E分別為BC,AB邊上一點,∠ADE=∠C.

(1)求證:△BDE∽△CAD;
(2)若CD=2,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在菱形ABCD中,E為BC邊上一點,∠AED=∠B.

(1)求證:△ABE∽△DEA;
(2)若AB=4,求AE•DE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

一天晚上,黎明和張龍利用燈光下的影子長來測量一路燈D的高度.如圖,當李明走到點A處時,張龍測得李明直立時身高AM與影子長AE正好相等;接著李明沿AC方向繼續(xù)向前走,走到點B處時,李明直立時身高BN的影子恰好是線段AB,并測得AB=1.25m,已知李明直立時的身高為1.75m,求路燈的高CD的長.(結(jié)果精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,點O為矩形ABCD的對稱中心,AB=10cm,BC=12cm.點E,F(xiàn),G分別從A,B,C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s.當點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關(guān)于直線EF的對稱圖形是△EB'F,設(shè)點E,F(xiàn),G運動的時間為t(單位:s).

(1)當t=    s時,四邊形EBFB'為正方形;
(2)若以點E,B,F(xiàn)為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;
(3)是否存在實數(shù)t,使得點B'與點O重合?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一邊QP在BC邊上,E、F分別在AB、AC上,AD交EF于點H.

(1)求證:
(2)設(shè)EF=x,當x為何值時,矩形EFPQ的面積最大?并求出最大面積;
(3)當矩形EFPQ的面積最大時,該矩形EFPQ以每秒1個單位的速度沿射線DA勻速向上運動(當矩形的邊PQ到達A點時停止運動),設(shè)運動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

在下列四個立體圖形中,俯視圖為正方形的是( 。

A. B. C. D.

查看答案和解析>>

同步練習冊答案