如圖,l1∥l2,l3與l1、l2相交于C、D二點,點P在l3上,在圖(1)、(2)、(3)中分別探究∠PAC、∠APB、∠PBD三者間關(guān)系,并證明.

(1)∠APB=∠PAC+∠PBD.
證明:過點P作PE∥l1
∵l1∥l2,
∴PE∥l1∥l2
∴∠1=∠PAC,∠2=∠PBD,
∴∠APB=∠1+∠2=∠PAC+∠PBD;

(2)∠PAC+∠APB=∠PBD.
證明:∵l1∥l2,
∴∠1=∠PBD,
∵∠1=∠PAC+∠APB,
∴∠PAC+∠APB=∠PBD.

(3)∠PBD+∠APB=∠PAC.
證明:∵l1∥l2,
∴∠1=∠PAC,
∵∠1=∠PBD+∠APB,
∴∠PBD+∠APB=∠PAC.
分析:(1)首先過點P作PE∥l1,由l1∥l2,可得PE∥l1∥l2,即可證得∠1=∠PAC,∠2=∠PBD,繼而證得:∠APB=∠PAC+∠PBD.
(2)由l1∥l2,根據(jù)平行線與三角形外角的性質(zhì),即可證得∠PAC+∠APB=∠PBD.
(3)由l1∥l2,根據(jù)平行線與三角形外角的性質(zhì),即可證得∠PBD+∠APB=∠PAC.
點評:此題考查了平行線的性質(zhì)與三角形外角的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,l1∥l2,∠1=120°,∠2=100°,則∠3=( �。�

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、已知:如圖,l1∥l2∥l3,AB=3,BC=5,DF=12.則DE=
4.5
,EF=
7.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,l1∥l2,AB⊥AC,∠ABC=50°,則∠1=(  )度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,l1∥l2∥l3,已知L1與l3之間的距離為8cm,l1與l2之間的距離為3cm,則l2與l3之間的距離為
5cm
5cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,l1∥l2,A、B為直線l1上兩點,C、D為直線l2上兩點,則△ACD與△BCD的面積大小關(guān)系是(  )
A、S△ACD<S△BCDB、S△ACD=S△BCDC、S△ACD>S△BCDD、不能確定

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹