如圖:正方形ABCO的邊長為3,過A點作直線AD交x軸于D點,且D點的坐標(biāo)為(4,0),線段AD上有一動點,以每秒一個單位長度的速度移動.

(1)求直線AD的解析式;

(2)若動點從A點開始沿AD方向運(yùn)動2.5秒時到達(dá)的位置為點P,求經(jīng)過B、O、P三點的拋物線的解析式;

(3)若動點從A點開始沿AD方向運(yùn)動2.5秒時到達(dá)的位置為點P1,過P1作P1E⊥x軸,垂足為E,設(shè)四邊形BCEP1的面積為S,請問S是否有最大值?若有,請求出來;若沒有,請說明理由.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCO放在平面直角坐標(biāo)系中,其中點O為坐標(biāo)原點,A、C兩點分別在x軸的負(fù)半軸和y軸的正半軸上,點B的坐標(biāo)為(-4,4).已知點E、點F分別從A、點B同時出發(fā),點E以每秒2個單位長度的速度在線段AB上來回運(yùn)動.點F沿B→C→0方向,以每秒1個單位長度的速度向點O運(yùn)動,當(dāng)點F到達(dá)點O時,E、F兩點都停止運(yùn)動.在E、F的運(yùn)動過程中,存在某個時刻,使得△OEF的面積為6.那么點E的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCO的邊長為4,D為AB上一點,且BD=3,以點C為中心,把△CBD順時針旋轉(zhuǎn)90°,得到△CB1D1
(1)直接寫出點D1的坐標(biāo);
(2)求點D旋轉(zhuǎn)到點D1所經(jīng)過的路線長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCO的邊長是2,E是BC中點,則E點的坐標(biāo)是
 
,直線AE的解析式是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCO的邊長為
5
,以O(shè)為原點建立平面直角坐標(biāo)系,點A在x軸的負(fù)半軸上,點C在y軸的正半軸上,把正方形ABCO繞點O順時針旋轉(zhuǎn)α后得到正方形A1B1C1O(α<45°),精英家教網(wǎng)B1C1交y軸于點D,且D為B1C1的中點,拋物線y=ax2+bx+c過點A1、B1、C1
(1)求tanα的值;
(2)求點A1的坐標(biāo),并直接寫出點B1、點C1的坐標(biāo);
(3)求拋物線的函數(shù)表達(dá)式及其對稱軸;
(4)在拋物線的對稱軸上是否存在點P,使△PB1C1為直角三角形?若存在,直接寫出所有滿足條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCO的邊長為
5
,O為原點,BC交y軸于點D,且D為BC邊的中點,拋物線y=a精英家教網(wǎng)x2+bx+c經(jīng)過B、C且與y軸的交點為E(0,
10
3
)

(1)求點C的坐標(biāo),并直接寫出點A、B的坐標(biāo);
(2)求拋物線的解析式及對稱軸;
(3)探索在拋物線的對稱軸上是否存在點P,使△PBC為直角三角形?若存在,直接寫出所有滿足條件的P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案