【題目】?jī)蓚(gè)大小不同的等腰直角三角形三角板如圖①所示放置,圖②是由它抽象出的幾何圖形,B,C,E在同一條直線上,連接DC.
求證:DC⊥BE.
【答案】證明:∵△ABC和△ADE都是等腰直角三角形,
∴AB=AC,AE=AD,∠BAC=∠DAE=90°,
∴∠BAC+∠CAE=∠DAE+∠CAE,
即∠BAE=∠CAD,
在△ABE和△ACD中, ,
∴△ABE≌△ACD(SAS),
∴∠ACD=∠B,
∴∠DCB=∠ACB+∠ACD=∠ACB+∠B=90°,
∴DC⊥BE.
【解析】根據(jù)等腰直角三角形的性質(zhì)可得AB=AC,AE=AD,∠BAC=∠DAE=90°,再求出∠BAE=∠CAD,然后利用“邊角邊”證明△ABE和△ACD全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠ACD=∠B,再求出∠DCB=90°,最后根據(jù)垂直的定義證明即可.
【考點(diǎn)精析】關(guān)于本題考查的等腰直角三角形,需要了解等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)A(a+2,b-1)在第二象限,則點(diǎn)B(-a,b-1)在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(﹣3,1)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是( )
A.(1,3)
B.(3,﹣1)
C.(﹣3,﹣1)
D.(﹣1,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖.
(1)在網(wǎng)格中畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;
(2)寫出△ABC關(guān)于x軸對(duì)稱的△A2B2C2的各頂點(diǎn)坐標(biāo);
(3)在y軸上確定一點(diǎn)P,使PA+PB最短.(只需作圖保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值. 解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0
∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.
根據(jù)你的觀察,探究下面的問(wèn)題:
(1)a2+b2﹣4a+4=0,則a= . b= .
(2)已知x2+2y2﹣2xy+6y+9=0,求xy的值.
(3)已知△ABC的三邊長(zhǎng)a、b、c都是正整數(shù),且滿足2a2+b2﹣4a﹣6b+11=0,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E在AB上,且BE= AB,點(diǎn)F是BC的中點(diǎn),點(diǎn)G是DE的中點(diǎn),延長(zhǎng)DF,與AB的延長(zhǎng)線交于點(diǎn)H.以下四個(gè)結(jié)論:
①FG= EH;②△DFE是直角三角形;③FG= DE;④DE=EB+BC.
其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com