【題目】某藥店銷售口罩,進價15元,售價20元,為防控新冠肺炎疫情,藥店決定凡是一次性購買10個以上的客戶,每多買一個,售價就降低0.1元(顧客所購買的全部口罩),但最低價是17元/個.
(1)顧客一次性至少購買多少個口罩時,才能以最低價17元/個購買?
(2)寫出一次性購買x個口罩時(x>10),藥店的利潤y(元)與購買量x(個)之間的函數(shù)關(guān)系式;
(3)在銷售過程中,藥店發(fā)現(xiàn)一次性賣出36個口罩時比賣出26個口罩的錢少,為了使每次銷售均能達(dá)到多賣就能多獲利,在其他促銷條件不變的情況下,最低價應(yīng)確定為每個多少元?
【答案】(1)顧客一次性至少購買40個口罩時,才能以最低價17元/個購買;(2)y=;(3)最低價應(yīng)確定為每個18元.
【解析】
(1)設(shè)顧客一次性至少購買x個口罩時,才能以最低價17元/個購買,由題意得關(guān)于x的一元一次方程,解方程即可;
(2)分兩種情況:①當(dāng)x>40時;②當(dāng)10<x≤40時,分別寫出函數(shù)關(guān)系式即可;
(3)當(dāng)10<x≤40時,將函數(shù)關(guān)系式配方,根據(jù)二次函數(shù)的性質(zhì)及問題的實際意義可得答案.
解:(1)設(shè)顧客一次性至少購買x個口罩時,才能以最低價17元/個購買,由題意得:
20﹣(x﹣10)×0.1=17,
解得x=40.
∴顧客一次性至少購買40個口罩時,才能以最低價17元/個購買.
(2)當(dāng)x>40時,y=(17﹣15)x=2x;
當(dāng)10<x≤40時,y=[(20﹣15)﹣(x﹣10)×0.1]x=﹣x2+6x.
∴藥店的利潤y購買量x之間的函數(shù)關(guān)系式為y=.
(3)當(dāng)10<x≤40時,
y=﹣x2+6x
=﹣(x﹣30)2+90.
∵二次項系數(shù)﹣<0,
∴當(dāng)x=30時,y有最大值,且30<x≤40,y隨x的增大而減小,
∴最低價應(yīng)定在銷售量為30個時的價格,才能使每次銷售均能達(dá)到多賣就能多獲利,
此時最低價為:20﹣(30﹣10)×0.1=18(元).
∴最低價應(yīng)確定為每個18元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B.
(1)在圖中找出一對相似三角形,并說明理由;
(2)若AB=8,AD=,AF=,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以頂點A為圓心,AD長為半徑,在AB邊上截取AE=AD,用尺規(guī)作圖法作出∠BAD的角平分線AG,若AD=5,DE=6,則AG的長是_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市射擊隊為從甲、乙兩名運動員中選拔一人參加省比賽,對他們進行了四次測試,測試成績?nèi)绫恚▎挝唬涵h(huán)):
第一次 | 第二次 | 第三次 | 第四次 | |
甲 | 9 | 8 | 8 | 7 |
乙 | 10 | 6 | 7 | 9 |
(1)根據(jù)表格中的數(shù)據(jù),分別計算甲、乙兩名運動員的平均成績;
(2)分別計算甲、乙兩人四次測試成績的方差;根據(jù)計算的結(jié)果,你認(rèn)為推薦誰參加省比賽更合適?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=8,BC=16,點D在邊BC上,沿DE將△ABC折疊,使點B與點A重合,連接AD,點P在線段AD上,當(dāng)點P到△ABC的直角邊距離等于5時,AP的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中,每一個小正方形的邊長都是1個單位長度,在平面直角坐標(biāo)系內(nèi),△ABC的三個頂點坐標(biāo)分別為A(1,1),B(3,2),C(2,4).
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1,直接寫出點A1的坐標(biāo);
(2)畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的△A2B2C2;
(3)在(2)的條件下,求BC邊所掃過的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是矩形兩條對角線的交點,E是邊上的點,沿折疊后,點恰好與點重合.若,則折痕的長為 ( )
A. B. C. D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某校組織“學(xué)經(jīng)典,用經(jīng)典”知識競賽,每班參加比賽的學(xué)生人數(shù)相同,成績分為四個等級,其中相應(yīng)等級的得分依次記為分,分,分,分,學(xué)校將某年級的一班和二班的成績整理并繪制成如下的統(tǒng)計圖:
請你根據(jù)以上提供的信息解答下列問題:
(1)此次競賽中二班成績“級”的人數(shù)為 ;
(2)請你將下表補充完整:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
一班 | |||
二班 |
(3)請你對這次兩班成績統(tǒng)計數(shù)據(jù)的結(jié)果進行分析(寫出一條結(jié)論即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在矩形ABCD中,AD=10cm,AB=4cm,動點P從點A出發(fā),以2cm/s的速度沿AD向終點D移動,設(shè)移動時間為(s) .連接PC,以PC為一邊作正方形PCEF,連接DE、DF.
(1)求正方形PCEF的面積(用含的代數(shù)式來表示,不要求化簡),并求當(dāng)正方形PCEF的面積為25 cm2時的值;
(2)設(shè)△DEF的面積為(cm2),求與之間的函數(shù)關(guān)系式,并求當(dāng)為何值時?△DEF的面積取得最小值,這個最小值是多少?
(3)求當(dāng)為何值時?△DEF為等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com