若實數(shù)a,b,c在數(shù)軸上對應(yīng)點的位置如圖所示,則下列不等式成立的是( )
A.a(chǎn)c>bc
B.a(chǎn)b>cb
C.a(chǎn)+c>b+c
D.a(chǎn)+b>c+b
【答案】分析:根據(jù)數(shù)軸判斷出a、b、c的正負(fù)情況,然后根據(jù)不等式的性質(zhì)解答.
解答:解:由圖可知,a<b<0,c>0,
A、ac<bc,故本選項錯誤;
B、ab>cb,故本選項正確;
C、a+c<b+c,故本選項錯誤;
D、a+b<c+b,故本選項錯誤.
故選B.
點評:本題考查了實數(shù)與數(shù)軸,不等式的基本性質(zhì),根據(jù)數(shù)軸判斷出a、b、c的正負(fù)情況是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•長寧區(qū)二模)若實數(shù)x、y滿足:|x|>|y|,則稱:x比y遠(yuǎn)離0.如圖,已知A、B、C、D、E五點在數(shù)軸上對應(yīng)的實數(shù)分別是a、b、c、d、e.若從這五個數(shù)中隨機選一個數(shù),則這個數(shù)比其它數(shù)都遠(yuǎn)離0的概率是
0
0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

所謂配方法其實就是逆用完全平方公式,即a2±2ab+b2=(a±b)2.該方法在數(shù)、式、方程等多方面應(yīng)用非常廣泛,如3+2
2
=12+2
2
+(
2
2;x2+2x+5=x2+2x+1+4=(x+1)2+4等等.請你用配方法解決以下問題:
(1)解方程:x2=5+2
6
;(不能出現(xiàn)形如
5+2
6
的雙重二次根式)
(2)若a2+4b2+c2-2a-8b+10c+30=0,解關(guān)于x的一元二次方程ax2-bx+c=0;
(3)求證:不論m為何值,解關(guān)于x的一元二次方程x2+(m-1)x+m-3=0總有兩個不等實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

所謂配方法其實就是逆用完全平方公式,即a2±2ab+b2=(a+b)2.該方法在數(shù)、式、方程等多方面應(yīng)用非常廣泛,如
3+2
2
=12+2
2
+(
2
2=(1+
2
2;x2+2x+5=x2+2x+1+4=(x+1)2+4等等.請你用配方法解決以下問題:
(1)解方程:x2=5+2
6
;(不能出現(xiàn)形如
5+2
6
的雙重二次根式)
(2)求證:不論m為何值,解關(guān)于x的一元二次方程x2+(m-1)x+m-3=0總有兩個不等實數(shù)根.
(3)若a2+4b2+c2-2a-8b+10c+30=0,解關(guān)于x的一元二次方程ax2-bx+c=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

所謂配方法其實就是逆用完全平方公式,即.該方法在數(shù)、式、方程等多方面應(yīng)用非常廣泛,如=等等.請你用配方法解決以下問題:

1.解方程:;(不能出現(xiàn)形如的雙重二次根式)

2.)若,解關(guān)于x的一元二次方程

3.求證:不論m為何值,解關(guān)于x的一元二次方程總有兩個不等實數(shù)根

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

所謂配方法其實就是逆用完全平方公式,即.該方法在數(shù)、式、方程等多方面應(yīng)用非常廣泛,如=等等.請你用配方法解決以下問題:
【小題1】解方程:;(不能出現(xiàn)形如的雙重二次根式)
【小題2】)若,解關(guān)于x的一元二次方程;
【小題3】求證:不論m為何值,解關(guān)于x的一元二次方程總有兩個不等實數(shù)根

查看答案和解析>>

同步練習(xí)冊答案