【題目】近年來,“在初中數(shù)學教學候總使用計算器是否直接影響學生計算能力的發(fā)展”這一問題受到了廣泛關注,為此,某校隨機調查了n名學生對此問題的看法(看法分為三種:沒有影響,影響不大,影響很大),并將調查結果 繪制成如下不完整的統(tǒng)計表和扇形統(tǒng)計圖,根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:
n名學生對使用計算器影響計算能力的發(fā)展看法人數(shù)統(tǒng)計表
看法 | 沒有影響 | 影響不大 | 影響很大 |
學生人數(shù)(人) | 40 | 60 | m |
(1)求n的值;
(2)統(tǒng)計表中的m= ;
(3)估計該校1800名學生中認為“影響很大”的學生人數(shù).
【答案】(1)200;(2)100;(3)900.
【解析】試題分析:(1)將“沒有影響”的人數(shù)÷其占總人數(shù)百分比=總人數(shù)n即可;
(2)用總人數(shù)減去“沒有影響”和“影響不大”的人數(shù)可得“影響很低”的人數(shù)m;
(3)將樣本中“影響很大”的人數(shù)所占比例乘以該?側藬(shù)即可得.
試題解析:(1)n=40÷20%=200(人).
答:n的值為200;
(2)m=200-40-60=100;
(3)1800×=900(人).
答:該校1800名學生中認為“影響很大”的學生人數(shù)約為900人.
故答案為:(2)100.
科目:初中數(shù)學 來源: 題型:
【題目】我們知道整數(shù)除以整數(shù)(其中),可以用豎式計算,例如計算可以用整式除法如圖:,所以.
類比此方法,多項式除以多項式一般也可以用豎式計算,步驟如下:
①把被除式,除式按某個字母作降冪排列,并把所缺的項用零補齊;
②用被除式的第一項除以除式第一項,得到商式的第一項;
③用商式的第一項去乘除式,把積寫在被除式下面(同類對齊),消去相等項;
④把減得的差當作新的被除式,再按照上面的方法繼續(xù)演算,直到余式為零或余式的次數(shù)低于除式的次數(shù)時為止,被除式=除式×商式+余式,若余式為零,說明這個多項式能被另一個多項式整除.
例如:計算.
可用整式除法如圖:
所以除以
商式為,余式為0
根據(jù)閱讀材料,請回答下列問題:
(1) .
(2),商式為 ,余式為 .
(3)若關于的多項式能被三項式整除,且均為整數(shù),求滿足以上條件的的值及商式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC=8,BD=6,點E,F分別是邊AB,BC的中點,點P在AC上運動,在運動過程中,存在PE+PF的最小值,則這個最小值是( 。
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中每個小正方形邊長均為1,每個小正方形的頂點叫格點,以格點為頂點按下列要求畫圖:
(1)畫一個△ABC,使AC=,BC=,AB=5;
(2)若點D為AB的中點,則CD的長是 ;
(3)在(2)的條件下,直接寫出點D到AC的距離為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系中有正方形AOBC,O為坐標原點,點A、B分別在y軸、x軸正半軸上,點P、E、F分別為邊BC、AC、OB上的點,EF⊥OP于M.
(1)如圖1,若點E與點A重合,點A坐標為(0,8),OF=3,求P點坐標;
(2)如圖2,若點E與點A重合,且P為邊BC的中點,求證:CM=2CP;
(3)如圖3,若點M為線段OP的中點,連接AB交EF于點N,連接NP,試探究線段OP與NP的數(shù)量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD,CE為△ABC的角平分線且交于O點,∠DAC=30°,∠ECA=35°,則∠ABO等于( )
A. 25° B. 30° C. 35° D. 40°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從三角形(不是等腰三角形)一個頂點引出一條射線于對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.
(1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD為△ABC的完美分割線.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD為等腰三角形,求∠ACB的度數(shù).
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com