(2012•鼓樓區(qū)二模)已知二次函數(shù)y=ax2+bx+c與自變量x的部分對(duì)應(yīng)值如下表:
x -1 0 1 3
y -3 1 3 1
現(xiàn)給出下列說法:
①該函數(shù)開口向上.  ②該函數(shù)圖象的對(duì)稱軸為過點(diǎn)(1,0)且平行于y軸的直線.
③當(dāng)x=4時(shí),y<0.   ④方程ax2+bx+c=0的正根在3與4之間.其中正確的說法為
③④
③④
.(只需寫出序號(hào))
分析:先根據(jù)x=0時(shí)y=1;x=1時(shí)y=3;x=-1時(shí),y=-3求出a、b、c的值,進(jìn)而得出二次函數(shù)的解析式,再根據(jù)二次函數(shù)的性質(zhì)對(duì)各小題進(jìn)行逐一判斷即可.
解答:解:∵x=0時(shí)y=1;x=1時(shí)y=3;x=-1時(shí),y=-3,
c=1
a+b+c=3
a-b+c=-3
,解得
a=-1
b=3
c=1
,
∴該二次函數(shù)的解析式為:y=-x2+3x+1,
∵a=-1>0,
∴此函數(shù)圖象開口向下;
∵該函數(shù)的對(duì)稱軸x=-
b
2a
=-
3
2×(-1)
=
3
2
,
∴該函數(shù)圖象的對(duì)稱軸過點(diǎn)(
3
2
,0),故②錯(cuò)誤;
∵當(dāng)x=4時(shí),y=-42+12+1=-3<0,
∴當(dāng)x=4時(shí),y<0,故③正確;
令-x2+3x+1=0,解得x1=
3-
13
2
,x2=
3+
13
2
,
∵3<
13
<4,
∴6<3+
13
<7,
∴3<
1+
13
2
7
2
<4,故④正確,
故答案為:③④.
點(diǎn)評(píng):本題考查的是二次函數(shù)的性質(zhì),先根據(jù)題意求出二次函數(shù)的解析式是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鼓樓區(qū)二模)化簡(jiǎn)
16
的結(jié)果是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鼓樓區(qū)二模)把2456000保留3個(gè)有效數(shù)字,得到的近似數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鼓樓區(qū)二模)某班每位學(xué)生上、下學(xué)期各選擇一個(gè)社團(tuán),下表分別為該班學(xué)生上、下學(xué)期各社團(tuán)的人數(shù)比例.若該班上、下學(xué)期的學(xué)生人數(shù)不變,關(guān)于上學(xué)期,下學(xué)期各社團(tuán)的學(xué)生人數(shù)變化,下列敘述正確的是( 。
文學(xué)社 籃球社 動(dòng)漫社
上學(xué)期 3 4 5
下學(xué)期 4 3 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鼓樓區(qū)二模)不等式3-
2-3x
5
1+x
2
的解集為
x≤-21
x≤-21

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鼓樓區(qū)二模)一條排水管的截面如圖所示.已知排水管的截面圓半徑OB=10,截面圓圓心O到水面的距離OC是6,則水面寬AB是
16
16

查看答案和解析>>

同步練習(xí)冊(cè)答案