【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點(diǎn)坐標(biāo)為( ,﹣2);⑤當(dāng)x< 時(shí),y隨x的增大而減;⑥a+b+c>0正確的有( )

A.3個(gè)
B.4個(gè)
C.5個(gè)
D.6個(gè)

【答案】B
【解析】由圖象可知,

拋物線開口向上,則a>0,頂點(diǎn)在y軸右側(cè),則b<0,與y軸交于負(fù)半軸,則c<0,

∴abc>0,故①正確,

函數(shù)圖象與x軸有兩個(gè)不同的交點(diǎn),則b2﹣4ac>0,即4ac<b2,故②正確,

由圖象可知, ,則2b=﹣2a,2a+b=﹣b>0,故③正確,

由拋物線過點(diǎn)(﹣1,0),(0,﹣2),(2,0),可得,

,

,

∴y=x2﹣x﹣2= ,

∴頂點(diǎn)坐標(biāo)是( ,﹣ ),故④錯(cuò)誤,

∴當(dāng)x< 時(shí),y隨x的增大而減小,故⑤正確,

當(dāng)x=1時(shí),y=a+b+c<0,故⑥錯(cuò)誤,

由上可得,正確是①②③⑤,

所以答案是:B.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識(shí),掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABD和∠BDC的平分線相交于點(diǎn)E,BECD于點(diǎn)F,∠1+2=90°.試說明:(1)直線AB//CD(2) 如果∠1=55°,求∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有實(shí)數(shù)根,則k的取值范圍在數(shù)軸上表示正確的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A(3,2)B(1,﹣2),C(1,﹣1).將ABC向右平移3個(gè)單位長(zhǎng)度,然后再向上平移1個(gè)單位長(zhǎng)度,可以得到A1B1C1

1A1B1C1的頂點(diǎn)A1的坐標(biāo)為   ;頂點(diǎn)C1的坐標(biāo)為   

2)求A1B1C1的面積.

3)已知點(diǎn)Px軸上,以A1、C1、P為頂點(diǎn)的三角形面積為,則P點(diǎn)的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(x,y),點(diǎn)B(xmymxy)(其中m為常數(shù),且m≠0),則稱B是點(diǎn)A的“m族衍生點(diǎn)”.例如:點(diǎn)A(1,2)的“3族衍生點(diǎn)”B的坐標(biāo)為(13×2,3×12),即B(5,1)

1)點(diǎn)(20)的“2族衍生點(diǎn)”的坐標(biāo)為   ;

2)若點(diǎn)A的“3族衍生點(diǎn)”B的坐標(biāo)是(1,5),則點(diǎn)A的坐標(biāo)為   ;

3)若點(diǎn)A(x0)(其中x≠0),點(diǎn)A的“m族衍生點(diǎn)“為點(diǎn)B,且ABOA,求m的值;

4)若點(diǎn)A(x,y)的“m族衍生點(diǎn)”與“﹣m族衍生點(diǎn)”都關(guān)于y軸對(duì)稱,則點(diǎn)A的位置在   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一條弦分圓周為5:7,這條弦所對(duì)的圓周角為(
A.75°
B.105°
C.60°或120°
D.75°或105°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元旦期間,某商場(chǎng)搞優(yōu)惠促銷活動(dòng),其活動(dòng)內(nèi)容是:凡在本商場(chǎng)一次性購物超過100元者,超過100元的部分按9折優(yōu)惠.在此活動(dòng)中,李明到該商場(chǎng)為單位一次性購買單價(jià)為60元的辦公用品x(x2)件,則應(yīng)付款y()與商品件數(shù)x()之間的關(guān)系式是( )

A.y54xB.y54x10

C.y54x90D.y54x45

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種洗衣機(jī)在洗滌衣服時(shí),經(jīng)歷了進(jìn)水、清洗、排水、脫水四個(gè)連續(xù)的過程,其中進(jìn)水、清洗、排水時(shí)洗衣機(jī)中的水量y()與時(shí)間x(分鐘)之間的關(guān)系如折線圖所示.根據(jù)圖象解答下列問題:

(1)洗衣機(jī)的進(jìn)水時(shí)間是多少分鐘?清洗時(shí)洗衣機(jī)中水量為多少升?

(2)已知洗衣機(jī)的排水速度為每分鐘19升.

①求排水時(shí)洗衣機(jī)中的水量y()與時(shí)間x(分鐘)與之間的關(guān)系式;

②如果排水時(shí)間為2分鐘,求排水結(jié)束時(shí)洗衣機(jī)中剩下的水量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交于點(diǎn),,,分別以,為邊作矩形,直線于點(diǎn),交直線于點(diǎn)

1)求直線的解析式及點(diǎn)的坐標(biāo).

2)如圖2,為直線上一動(dòng)點(diǎn),點(diǎn),點(diǎn)為直線上兩動(dòng)點(diǎn)(在上,在下),滿足,當(dāng)最大時(shí),求的最小值,并求出此時(shí)點(diǎn)的坐標(biāo).

3)如圖3,將繞著點(diǎn)順時(shí)針旋轉(zhuǎn),記旋轉(zhuǎn)后的三角形為,線段所在的直線交直線于點(diǎn)不與、重合),交軸于點(diǎn),在平面內(nèi)是否存在一點(diǎn),使得以四點(diǎn)形成的四邊形為菱形,若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說出理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案