(2008•西寧)如圖,已知半徑為1的⊙O1與x軸交于A,B兩點(diǎn),OM為⊙O1的切線,切點(diǎn)為M,圓心O1的坐標(biāo)為(2,0),二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A,B兩點(diǎn).
(1)求二次函數(shù)的解析式;
(2)求切線OM的函數(shù)解析式;
(3)線段OM上存在一點(diǎn)P,使得以P,O,A為頂點(diǎn)的三角形與△OO1M相似.請問有幾個(gè)符合條件的點(diǎn)P并分別求出它們的坐標(biāo).

【答案】分析:(1)根據(jù)圓心的坐標(biāo)和半徑的長即可求出A,B兩點(diǎn)的坐標(biāo),然后將A,B的坐標(biāo)代入拋物線中即可得出二次函數(shù)的解析式.
(2)可先在直角三角形OO1M中求出∠MO1O的度數(shù),然后過M作x軸的垂線,設(shè)垂足為F,可在直角三角形MO1F中根據(jù)∠MO1O的度數(shù)和MO1的長求出MF和O1F的長,即可得出M點(diǎn)的坐標(biāo),進(jìn)而可根據(jù)M的坐標(biāo)求出直線OM的解析式.
(3)由于P在OM上,因此∠POA=∠MOO1,因此本題可分兩種情況進(jìn)行討論:
①當(dāng)AP∥O1M時(shí),②當(dāng)PA⊥OB時(shí).據(jù)此可求出P點(diǎn)的坐標(biāo).(①可參照求M點(diǎn)坐標(biāo)時(shí)的方法來解,②可直接將A點(diǎn)橫坐標(biāo)代入直線OM的解析式中,即可求出P的坐標(biāo)).
解答:解:(1)∵圓心的坐標(biāo)為O1(2,0),⊙O1半徑為1,
∴A(1,0),B(3,0),
∵二次函數(shù)y=-x2+bx+c的圖象經(jīng)過點(diǎn)A,B,
∴可得方程組,
解得:
∴二次函數(shù)解析式為y=-x2+4x-3.

(2)過點(diǎn)M作MF⊥X軸,垂足為F.
∵OM是⊙O1的切線,M為切點(diǎn),
∴O1M⊥OM(圓的切線垂直于經(jīng)過切點(diǎn)的半徑).
在RT△OO1M中,sin∠O1OM==,
∵∠O1OM為銳角,
∴∠O1OM=30°,
∴OM=OO1•cos30°=
在RT△MOF中,OF=OM•cos30°=
MF=OMsin30°=
∴點(diǎn)M坐標(biāo)為(),
設(shè)切線OM的函數(shù)解析式為y=kx(k≠0),由題意可知=k,
∴k=,
∴切線OM的函數(shù)解析式為y=x

(3)兩個(gè),
①過點(diǎn)A作AP1⊥x軸,與OM交于點(diǎn)P1
可得Rt△AP1O∽Rt△MO1O(兩角對應(yīng)相等兩三角形相似),
P1A=OA•tan∠AOP1=,
∴P1(1,);
②過點(diǎn)A作AP2⊥OM,垂足為,過P2點(diǎn)作P2H⊥OA,垂足為H.
可得Rt△OP2A∽Rt△O1MO(兩角對應(yīng)相等兩三角形相似),
在Rt△OP2A中,
∵OA=1,
∴P2=OA•cos30°=,
在Rt△OP2H中,OH=OP2•cos∠AOP2=,
P2H=OP2•sin∠AOP2=,P2,),
∴符合條件的P點(diǎn)坐標(biāo)有(1,),(,).
點(diǎn)評:本題主要考查了切線的性質(zhì),一次函數(shù)和二次函數(shù)解析式的確定,相似三角形的判定和性質(zhì)等知識點(diǎn).
考查學(xué)生分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2008•西寧)如圖,一塊三角形模具的陰影部分已破損.
(1)只要從殘留的模具片中度量出哪些邊,角,就可以不帶殘留的模具片到店鋪加工一塊與原來的模具ABC的形狀和大小完全相同的模具A′B′C′?請簡要說明理由.
(2)作出模具△A′B′C′的圖形(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法和證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省湖州市初中數(shù)學(xué)學(xué)業(yè)考試模擬試卷3(千金中學(xué) 費(fèi)小琴)(解析版) 題型:解答題

(2008•西寧)如圖,已知半徑為1的⊙O1與x軸交于A,B兩點(diǎn),OM為⊙O1的切線,切點(diǎn)為M,圓心O1的坐標(biāo)為(2,0),二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A,B兩點(diǎn).
(1)求二次函數(shù)的解析式;
(2)求切線OM的函數(shù)解析式;
(3)線段OM上存在一點(diǎn)P,使得以P,O,A為頂點(diǎn)的三角形與△OO1M相似.請問有幾個(gè)符合條件的點(diǎn)P并分別求出它們的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年云南省紅河州開遠(yuǎn)市中考數(shù)學(xué)模擬試卷(2)(解析版) 題型:解答題

(2008•西寧)如圖,已知半徑為1的⊙O1與x軸交于A,B兩點(diǎn),OM為⊙O1的切線,切點(diǎn)為M,圓心O1的坐標(biāo)為(2,0),二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A,B兩點(diǎn).
(1)求二次函數(shù)的解析式;
(2)求切線OM的函數(shù)解析式;
(3)線段OM上存在一點(diǎn)P,使得以P,O,A為頂點(diǎn)的三角形與△OO1M相似.請問有幾個(gè)符合條件的點(diǎn)P并分別求出它們的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年山東省濰坊市濰城區(qū)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2008•西寧)如圖,已知半徑為1的⊙O1與x軸交于A,B兩點(diǎn),OM為⊙O1的切線,切點(diǎn)為M,圓心O1的坐標(biāo)為(2,0),二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A,B兩點(diǎn).
(1)求二次函數(shù)的解析式;
(2)求切線OM的函數(shù)解析式;
(3)線段OM上存在一點(diǎn)P,使得以P,O,A為頂點(diǎn)的三角形與△OO1M相似.請問有幾個(gè)符合條件的點(diǎn)P并分別求出它們的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案