【題目】如圖,矩形ABCD中,AB=3,BC=4,動點P從A點出發(fā),按A→B→C的方向在AB和BC上移動,記PA=x,點D到直線PA的距離為y,則y關于x的函數(shù)圖象大致是( )

A.
B.
C.
D.

【答案】B
【解析】解:①點P在AB上時,0≤x≤3,點D到AP的距離為AD的長度,是定值4;②點P在BC上時,3<x≤5,
∵∠APB+∠BAP=90°,
∠PAD+∠BAP=90°,
∴∠APB=∠PAD,
又∵∠B=∠DEA=90°,
∴△ABP∽△DEA,
=
=
∴y= ,
縱觀各選項,只有B選項圖形符合.
故選:B.

①點P在AB上時,點D到AP的距離為AD的長度,②點P在BC上時,根據(jù)同角的余角相等求出∠APB=∠PAD,再利用相似三角形的對應邊成比例的性質(zhì)列出比例式整理得到y(tǒng)與x的關系式,從而得解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AD=4,點E是對角線AC上一點,連接DE,過點E作EF⊥ED,交AB于點F,連接DF,交AC于點G,將△EFG沿EF翻折,得到△EFM,連接DM,交EF于點N,若點F是AB的中點,則△EMN的周長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖,已知點C在線段AB上,且AC=5cm,BC=3cm,M,N分別是AC,BC的中點,求線段MN的長度.

(2)若點C是線段AB上任意一點,且AC=a,BC=b, M、N分別是,AC,BC的中點,請直接寫出線段MN的長度(用含a,b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAC的平分線交△ABC的外接圓于點D,∠ABC的平分線交AD于點E,
(1)求證:DE=DB;
(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC△DBE中,BC=BE,還需要添加兩個條件才能使△ABC≌△DBE,則不能添加的一組條件是(

A. AC=DE,∠C=∠E B. BD=AB,AC=DE C. AB=DB,∠A=∠D D. ∠C=∠E,∠A=∠D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點,以O為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF,弧EF經(jīng)過點C,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將含45°角的三角板的直角頂點R放在直線l上,分別過兩銳角的頂點M,N作l的垂線,垂足分別為P、Q,
(1)如圖1,觀察圖1可知:與NQ相等的線段是 , 與∠NPQ相等的角是

(2)直角△ABC中,∠B=90°,在AB邊上任取一點D,連接CD,分別以AC,DC為邊作正方形ACEF和正方形CDGH,如圖2,過E,H分別作BC所在直線的垂線,垂足分別為K,L.試探究EK與HL之間的數(shù)量關系,并證明你的結論.

(3)直角△ABC中,∠B=90°,在AB邊上任取一點D,連接CD,分別以AC,DC為邊作矩形ACEF和矩形CDGH,連接EH交BC所在的直線于點T,如圖3,如果AC=kCE,CD=kCH,試探究TE與TH之間的數(shù)量關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】意大利著名數(shù)學家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,其中從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和.現(xiàn)以這組數(shù)中的各個數(shù)作為正方形的長度構造一組正方形(如下圖),再分別依次從左到右取2個,3個,4個,5個正方形拼成如下長方形并記為①,②,③,④,相應長方形的周長如下表所示:

若按此規(guī)律繼續(xù)作長方形,則序號為⑧的長方形周長是( )

A. 288 B. 178 C. 28 D. 110

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理過程,請?zhí)羁?/span>.

解:∵OA⊥OB(已知)

所以_____=90°________

因為_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,

所以______=_____(等量代換)

所以______=90°

所以OC⊥OD.

查看答案和解析>>

同步練習冊答案