如圖,已知一次函數(shù)y=-
3
4
x+6
與坐標(biāo)軸交于A、B點(diǎn),AE是∠BAO的平分線,過(guò)點(diǎn)B作BE⊥AE,垂足為E,過(guò)E作x軸的垂線,垂足為M.
(1)求證:M為OB的中點(diǎn);
(2)求以E為頂點(diǎn),且經(jīng)過(guò)點(diǎn)A的拋物線解析式.
解法一:
(1)證明:延長(zhǎng)BF交y軸于F點(diǎn).如圖:
∵AE是∠BAO的平分線,
∴∠1=∠2,
∵BE⊥AE,
∴∠AFB=∠ABF,
∴AF=AB,(1分)
∴BE=FE,(1分)
∵M(jìn)EAF,
OM
MB
=
EF
BE
,(1分)
∴OM=MB,即M為OB的中點(diǎn);(1分)

(2)∵一次函數(shù)y=-
3
4
x+6與坐標(biāo)軸交于A、B點(diǎn),
∴A(0,6),B(8,0),
∴OM=4,AB=AF=10,(2分)
∴OF=4,
∴ME=2,(1分)
∴E(4,-2),(1分)
設(shè)以E為頂點(diǎn)的拋物線解析式為y=a(x-4)2-2,(1分)
∵拋物線經(jīng)過(guò)點(diǎn)A(0,6),
∴a=
1
2
,(1分)
即以E為頂點(diǎn),且經(jīng)過(guò)點(diǎn)A的拋物線解析式為y=
1
2
(x-4)2-2或y=
1
2
x2-4x+6;

解法二:
如圖2,過(guò)H作HG⊥AB于G點(diǎn),(1分)
∵一次函數(shù)y=-
3
4
x+6與坐標(biāo)軸交于A、B點(diǎn)
∴A(0,6),B(8,0),(1分)
設(shè)OH=x,∵∠1=∠2,
∴OH=HG=x,HB=8-x(1分)
∴在Rt△HGB中,得x=3(1分)
∴OH=3,HB=5
由△AOH△BEH得:HE=
5
,BE=2
5
,(2分)
∴ME=
HE•BE
HB
=2,HM=1,
∴OM=4,(2分)
∴M為OB的中點(diǎn),
∴E(4,-2),(1分)
設(shè)以E為頂點(diǎn)的拋物線解析式為y=a(x-4)2-2,(1分)
∵拋物線經(jīng)過(guò)點(diǎn)A(0,6),
∴a=
1
2
,(1分)
即以E為頂點(diǎn),且經(jīng)過(guò)點(diǎn)A的拋物線解析式為y=
1
2
(x-4)2-2或y=
1
2
x2-4x+6.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,拋物線y=ax2+bx+c的頂點(diǎn)為C(1,0),且與直線l:y=x+m交y軸于同一點(diǎn)B(0,1),與直線l交于另一點(diǎn)A,D為拋物線的對(duì)稱軸與直線l的交點(diǎn),P為線段AB上的一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過(guò)點(diǎn)P作y軸的平行線交拋物線于點(diǎn)E.
(1)求拋物線和直線l的函數(shù)解析式,及另一交點(diǎn)A的坐標(biāo);
(2)求△ABE的最大面積是多少?
(3)問(wèn)是否存在這樣的點(diǎn)P,使四邊形PECD為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點(diǎn)為D點(diǎn),與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),OB=OC,tan∠ACO=
1
3

(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)經(jīng)過(guò)C、D兩點(diǎn)的直線,與x軸交于點(diǎn)E,在拋物線上是否存在這樣的點(diǎn)F,使以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知二次函數(shù)y=ax2(a≥1)的圖象上兩點(diǎn)A,B的橫坐標(biāo)分別為-1,2,O是坐標(biāo)原點(diǎn),如果△AOB是直角三角形,則△AOB的周長(zhǎng)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一座拱橋的輪廓是拋物線型(如圖1所示),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.
(1)將拋物線放在所給的直角坐標(biāo)系中(如圖2所示),其表達(dá)式是y=ax2+c的形式.請(qǐng)根據(jù)所給的數(shù)據(jù)求出a,c的值.
(2)求支柱MN的長(zhǎng)度.
(3)拱橋下地平面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道能否并排行駛寬2m、高3m的三輛汽車(汽車間的間隔忽略不計(jì))?請(qǐng)說(shuō)說(shuō)你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,用長(zhǎng)為18m的籬笆(虛線部分),兩面靠墻圍成矩形的苗圃.
(1)設(shè)矩形的一邊為x(m),面積為y(m2),求y關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),所圍苗圃的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商場(chǎng)將每件進(jìn)價(jià)為80元的某種商品原來(lái)按每件100元出售,一天可售出100件,經(jīng)調(diào)查這種商品每降低1元,其銷量可增加10件.
①求商場(chǎng)原來(lái)一天可獲利潤(rùn)多少元?
②設(shè)后來(lái)該商品每件降價(jià)x元,一天可獲利潤(rùn)y元.
1)若經(jīng)營(yíng)該商品一天要獲利2160元,則每件商品應(yīng)降價(jià)多少元?
2)當(dāng)售價(jià)為多少時(shí),獲利最大并求最大值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知A1,A2,A3,…,A2006是x軸上的點(diǎn),且OA1=A1A2=A2A3=…=A2005A2006=1,分別過(guò)點(diǎn)A1,A2,A3,…,A2006作x軸的垂線交二次函數(shù)y=x2(x≥0)的圖象于點(diǎn)P1,P2,P3,…,P2006點(diǎn),若記△OA1P1的面積為S1,過(guò)點(diǎn)P1作P1B1⊥A2P2于點(diǎn)B1,記△P1B1P2的面積為S2,過(guò)點(diǎn)P2作P2B2⊥A3P3于點(diǎn)B2,記△P2B2P3的面積為S3,…,依次進(jìn)行下去,最后記△P2005B2005P2006的面積為S2006,則S2006-S2005=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在矩形ABCD中,AD=12,AB=8,在線段BC上任取一點(diǎn)P,連接DP,作射線PE⊥DP,PE與直線AB交于點(diǎn)E.
(1)設(shè)CP=x,BE=y,試寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)點(diǎn)P在什么位置時(shí),線段BE最長(zhǎng)?

查看答案和解析>>

同步練習(xí)冊(cè)答案