精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AB是⊙O的直徑,C是 的中點,⊙O的切線BD交AC的延長線于點D,E是OB的中點,CE的延長線交切線BD于點F,AF交⊙O于點H,連接BH.
(1)求證:AC=CD;
(2)若OB=2,求BH的長.

【答案】
(1)解:證明:連接OC,

∵C是 的中點,AB是⊙O的直徑,

∴CO⊥AB,

∵BD是⊙O的切線,

∴BD⊥AB,

∴OC∥BD,

∵OA=OB,

∴AC=CD;


(2)解:解:∵E是OB的中點,

∴OE=BE,

在△COE和△FBE中,

,

∴△COE≌△FBE(ASA),

∴BF=CO,

∵OB=2,

∴BF=2,

∴AF= =2 ,

∵AB是直徑,

∴BH⊥AF,

∴△ABF∽△BHF,

=

∴ABBF=AFBH,

∴BH= = =


【解析】(1)連接OC,由C是 的中點,AB是⊙O的直徑,則CO⊥AB,再由BD是⊙O的切線,得BD⊥AB,從而得出OC∥BD,即可證明AC=CD;(2)根據點E是OB的中點,得OE=BE,可證明△COE≌△FBE(ASA),則BF=CO,即可得出BF=2,由勾股定理得出AF= ,由AB是直徑,得BH⊥AF,可證明△ABF∽△BHF,即可得出BH的長.
【考點精析】解答此題的關鍵在于理解勾股定理的概念的相關知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對切線的性質定理的理解,了解切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,AE∥BF,AC平分∠BAE,且交BF于點C,BD平分∠ABF,且交AE于點D,連接CD.
(1)求證:四邊形ABCD是菱形;
(2)若∠ADB=30°,BD=6,求AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在一條筆直的東西向海岸線l上有一長為1.5km的碼頭MN和燈塔C,燈塔C距碼頭的東端N有20km.一輪船以36km/h的速度航行,上午10:00在A處測得燈塔C位于輪船的北偏西30°方向,上午10:40在B處測得燈塔C位于輪船的北偏東60°方向,且與燈塔C相距12km.

(1)若輪船照此速度與航向航行,何時到達海岸線?
(2)若輪船不改變航向,該輪船能否?吭诖a頭?請說明理由.(參考數據: ≈1.4, ≈1.7)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD,點E,F(xiàn)分別在AD,CD上,BG⊥EF,點G為垂足,AB=5,AE=1,CF=2,則BG=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線y=ax2+bx+3(a≠0)過A(4,4),B(2,m)兩點,點B到拋物線對稱軸的距離記為d,滿足0<d≤1,則實數m的取值范圍是(
A.m≤2或m≥3
B.m≤3或m≥4
C.2<m<3
D.3<m<4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為建設生態(tài)平頂山,某校學生在植樹節(jié)那天,組織九年級八個班的學生到山頂公園植樹,各班植樹情況如下表:下列說法錯誤的是( )

班 級

棵 數

15

18

22

25

29

14

18

19


A.這組數據的眾數是18
B.這組數據的平均數是20
C.這組數據的中位數是18.5
D.這組數據的方差為0

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知函數y=2+
(1)寫出自變量x的取值范圍:;
(2)請通過列表,描點,連線畫出這個函數的圖象: ①列表:

x

﹣8

﹣4

﹣3

﹣2

﹣1

1

2

3

4

8

y

1

0

﹣2

﹣6

10

6

4

3

②描點(在下面給出的直角坐標系中補全表中對應的各點);
③連線(將圖中描出的各點用平滑的曲線連接起來,得到函數的圖象).

(3)觀察函數的圖象,回答下列問題: ①圖象與x軸有個交點,所以對應的方程2+ =0實數根是;
②函數圖象的對稱性是
A、既是軸對稱圖形,又是中心對稱圖形
B、只是軸對稱圖形,不是中心對稱圖形
C、不是軸對稱圖形,而是中心對稱圖形
D、既不是軸對稱圖形也不是中心對稱圖形
(4)寫出函數y=2+ 與y= 的圖象之間有什么關系?(從形狀和位置方面說明)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個不透明的袋子中裝有僅顏色不同的2個紅球和2個白球,兩個人依次從袋子中隨機摸出一個小球不放回,則第一個人摸到紅球且第二個人摸到白球的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,已知P為正方形ABCD的對角線AC上一點(不與A、C重合),PE⊥BC于點E,PF⊥CD于點F.
(1)求證:BP=DP;
(2)如圖2,若四邊形PECF繞點C按逆時針方向旋轉,在旋轉過程中是否總有BP=DP?若是,請給予證明;若不是,請用反例加以說明;
(3)試選取正方形ABCD的兩個頂點,分別與四邊形PECF的兩個頂點連接,使得到的兩條線段在四邊形PECF繞點C按逆時針方向旋轉的過程中長度始終相等,并證明你的結論.

查看答案和解析>>

同步練習冊答案