【題目】如圖是拋物線(xiàn)y1=ax2+bx+c(a≠0)圖象的一部分,拋物線(xiàn)的頂點(diǎn)坐標(biāo)A(1,3),與x軸的一個(gè)交點(diǎn)B(4,0),直線(xiàn)y2=mx+n(m≠0)與拋物線(xiàn)交于A,B兩點(diǎn),下列結(jié)論:
①2a+b=0;
②abc>0;
③方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;
④拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)是(-1,0);
⑤當(dāng)1<x<4時(shí),有y2<y1,
其中正確的是( 。
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
【答案】C
【解析】利用軸對(duì)稱(chēng)是直線(xiàn)y=1判定①;利用開(kāi)口方向,對(duì)稱(chēng)軸與y主的交點(diǎn)判定a、b、c得出②;利用頂點(diǎn)坐標(biāo)和平移的規(guī)律判定③;利用對(duì)稱(chēng)軸和二次函數(shù)的對(duì)稱(chēng)判定④;利用圖象直接判定⑤即可.
解:∵對(duì)稱(chēng)軸x=-=1‘∴2a+b=0,①正確;
∵a<0,∴b >0,∵拋物線(xiàn)與y軸的交點(diǎn)在正半軸上,∴c>0,∴abc<0,②錯(cuò)誤;
∵把拋物線(xiàn)y=ax2+bx+c向下平移3個(gè)單位,得到y(tǒng)=ax2+bx-3,∴頂點(diǎn)坐標(biāo)A(1,3)變?yōu)椋?,0),拋物線(xiàn)與x軸相切,∴方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根,③正確;
∵對(duì)稱(chēng)軸是直線(xiàn)x=1,與x軸的一個(gè)交點(diǎn)是(4,0),∴與x軸的另一個(gè)交點(diǎn)是(-2,0),④錯(cuò)誤;∵1<x<4時(shí),由圖象可知y2<y1,∴⑤正確.
正確的有①③⑤.
故選C.
“點(diǎn)睛”本題考查了二次項(xiàng)系數(shù)與系數(shù)的關(guān)系:對(duì)于二次函數(shù)y=ax2+bx+c(a≠0),二次項(xiàng)系數(shù)a決定拋物線(xiàn)的開(kāi)口方向和大。寒(dāng)a>0時(shí),拋物線(xiàn)向上開(kāi)口;當(dāng)a<0時(shí),拋物線(xiàn)向下開(kāi)口;一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱(chēng)軸的位置:當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱(chēng)軸在y軸左; 當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱(chēng)軸在y軸右.(簡(jiǎn)稱(chēng):左同右異);常數(shù)項(xiàng)c決定拋物線(xiàn)與y軸交點(diǎn):拋物線(xiàn)與y軸交于(0,c);拋物線(xiàn)與x軸交點(diǎn)個(gè)數(shù)由△決定:△=b2﹣4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn);△=b2﹣4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn);△=b2﹣4ac<0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C是⊙O上的一點(diǎn),連結(jié)AC并延長(zhǎng)至D,使CD=AC,連結(jié)BD,作CE⊥BD,垂足為E。
(1)線(xiàn)段AB與DB的大小關(guān)系為 ,請(qǐng)證明你的結(jié)論;
(2)判斷CE與⊥⊙O的位置關(guān)系,并證明;
(3)當(dāng)△CED與四邊形ACEB的面積比是1:7時(shí),試判斷△ABD的形狀,并證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2﹣x﹣6.
(1)畫(huà)出函數(shù)的圖象;
(2)觀察圖象,指出方程x2﹣x﹣6=0的解及不等式x2﹣x﹣6>0解集;
(3)求二次函數(shù)的圖象與坐標(biāo)軸的交點(diǎn)所構(gòu)成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠BAD =60,AC交BD于點(diǎn)O,以點(diǎn)D為圓心的⊙D與邊AB相切于點(diǎn)E.
(1)、求AC的長(zhǎng);(2)、求證:⊙D與邊BC也相切
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列去括號(hào)正確的是( )
A.a﹣2(﹣b+c)=a﹣2b﹣2c
B.a﹣2(﹣b+c)=a+2b﹣2c
C.a+2(b﹣c)=a+2b﹣c
D.a+2(b﹣c)=a+2b+2c
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸上點(diǎn)A表示的數(shù)是2,那么與點(diǎn)A相距5個(gè)單位長(zhǎng)度的點(diǎn)表示的數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°.
(1)用圓規(guī)和直尺在AC上作點(diǎn)P,使點(diǎn)P到A、B的距離相等.(保留作圖痕跡,不寫(xiě)作法和證明)
(2)當(dāng)滿(mǎn)足(1)的點(diǎn)P到AB、BC的距離相等時(shí),求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠ABC=90°,△ABE是等邊三角形,點(diǎn)P為射線(xiàn)BC上任意一點(diǎn)(點(diǎn)P與點(diǎn)B不重合),連接AP,將線(xiàn)段AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到線(xiàn)段AQ,連接QE并延長(zhǎng)交射線(xiàn)BC于點(diǎn)F.
(1)如圖,當(dāng)BP=BA時(shí),∠EBF=______°,猜想∠QFC =______°;
(2)如圖,當(dāng)點(diǎn)P為射線(xiàn)BC上任意一點(diǎn)時(shí),猜想∠QFC的度數(shù),并加以證明.
(3)已知線(xiàn)段AB=,設(shè)BP=x,點(diǎn)Q到射線(xiàn)BC的距離為y,求y關(guān)于x的函數(shù)關(guān)系式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com