【題目】如圖,方格紙中的每個(gè)小正方形的邊長(zhǎng)都為1,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上.
(1)以點(diǎn)A為旋轉(zhuǎn)中心,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△AB1C1,畫(huà)出△AB1C1.
(2)畫(huà)出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)的△A2B2C2,若點(diǎn)C的坐標(biāo)為(﹣4,﹣1),則點(diǎn)C2的坐標(biāo)為 .
【答案】(1)見(jiàn)解析,(2)圖見(jiàn)解析;(4,1)
【解析】
(1)讓三角形的各頂點(diǎn)都繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到對(duì)應(yīng)點(diǎn),順次連接即可;
(2)根據(jù)△ABC的各頂點(diǎn)關(guān)于原點(diǎn)的中心對(duì)稱(chēng),得出A2、B2、C2的坐標(biāo),連接各點(diǎn),即可得到結(jié)論.
解:(1)所畫(huà)圖形如下所示,△A1B1C1即為所求;
(2)所畫(huà)圖形如下所示,△AB2C2即為所求.
點(diǎn)C2的坐標(biāo)為(4,1),
故答案為:(4,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一段拋物線y=﹣x2+4(﹣2≤x≤2)為C1,與x軸交于A0,A1兩點(diǎn),頂點(diǎn)為D1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得到C2,頂點(diǎn)為D2;C1與C2組成一個(gè)新的圖象,垂直于y軸的直線l與新圖象交于點(diǎn)P1(x1,y1),P2(x2,y2),與線段D1D2交于點(diǎn)P3(x3,y3),設(shè)x1,x2,x3均為正數(shù),t=x1+x2+x3,則t的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=,E是AD邊上的一點(diǎn)(點(diǎn)E與點(diǎn)A和點(diǎn)D不重合),BE的垂直平分線交AB于點(diǎn)M,交DC于點(diǎn)N.
(1)證明:MN = BE.
(2)設(shè)AE=,四邊形ADNM的面積為S,寫(xiě)出S關(guān)于的函數(shù)關(guān)系式.
(3)當(dāng)AE為何值時(shí),四邊形ADNM的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=10°,點(diǎn)P在OB上.以點(diǎn)P為圓心,OP為半徑畫(huà)弧,交OA于點(diǎn)P1(點(diǎn)P1與點(diǎn)O不重合),連接PP1;再以點(diǎn)P1為圓心,OP為半徑畫(huà)弧,交OB于點(diǎn)P2(點(diǎn)P2與點(diǎn)P不重合),連接P1 P2;再以點(diǎn)P2為圓心,OP為半徑畫(huà)弧,交OA于點(diǎn)P3(點(diǎn)P3與點(diǎn)P1不重合),連接P2 P3;……
請(qǐng)按照上面的要求繼續(xù)操作并探究:
∠P3 P2 P4=_____°;按照上面的要求一直畫(huà)下去,得到點(diǎn)Pn,若之后就不能再畫(huà)出符合要求點(diǎn)Pn+1了,則n=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為2,將射線AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α,所得射線與線段BD交于點(diǎn)M,作CE⊥AM于點(diǎn)E,點(diǎn)N與點(diǎn)M關(guān)于直線CE對(duì)稱(chēng),連接CN.
(1)如圖,當(dāng)0°<α<45°時(shí):
①依題意補(bǔ)全圖;
②用等式表示∠NCE與∠BAM之間的數(shù)量關(guān)系:___________;
(2)當(dāng)45°<α<90°時(shí),探究∠NCE與∠BAM之間的數(shù)量關(guān)系并加以證明;
(3)當(dāng)0°<α<90°時(shí),若邊AD的中點(diǎn)為F,直接寫(xiě)出線段EF長(zhǎng)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為8的正方形紙片ABCD沿著EF折疊,使點(diǎn)C落在AB邊的中點(diǎn)M處.點(diǎn)D落在點(diǎn)D'處,MD'與AD交于點(diǎn)G,則△AMG的內(nèi)切圓半徑的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(x1,y1)、B(x2,y2)在二次函數(shù)y=x2+mx+n的圖像上,當(dāng)x1=1、x2=3時(shí),y1=y2.
(1)若P(a,b1),Q(3,b2)是函數(shù)圖象上的兩點(diǎn),b1>b2,則實(shí)數(shù)a的取值范圍是( )
A.a<1 B.a>3 C.a<1或a>3 D.1<a<3
(2)若拋物線與x軸只有一個(gè)公共點(diǎn),求二次函數(shù)的表達(dá)式.
(3)若對(duì)于任意實(shí)數(shù)x1、x2都有y1+y2≥2,則n的范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計(jì),盆景的平均每盆利潤(rùn)是160元,花卉的平均每盆利潤(rùn)是19元,調(diào)研發(fā)現(xiàn):
①盆景每增加1盆,盆景的平均每盆利潤(rùn)減少2元;每減少1盆,盆景的平均每盆利潤(rùn)增加2元;②花卉的平均每盆利潤(rùn)始終不變.
小明計(jì)劃第二期培植盆景與花卉共100盆,設(shè)培植的盆景比第一期增加x盆,第二期盆景與花卉售完后的利潤(rùn)分別為W1,W2(單位:元)
(1)用含x的代數(shù)式分別表示W1,W2;
(2)當(dāng)x取何值時(shí),第二期培植的盆景與花卉售完后獲得的總利潤(rùn)W最大,最大總利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線與軸交于點(diǎn)、,頂點(diǎn)為M.
(1)求拋物線的解析式和點(diǎn)M的坐標(biāo);
(2)點(diǎn)E是拋物線段BC上的一個(gè)動(dòng)點(diǎn),設(shè)的面積為S,求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);
(3)在拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使得以A、P、C為頂點(diǎn)的三角形是直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com