【題目】如圖,已知拋物線y=﹣x2+2x經(jīng)過原點(diǎn)O,且與直線y=x﹣2交于B,C兩點(diǎn).

(1)求拋物線的頂點(diǎn)A的坐標(biāo)及點(diǎn)B,C的坐標(biāo);

(2)求證:∠ABC=90°;

(3)在直線BC上方的拋物線上是否存在點(diǎn)P,使△PBC的面積最大?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;

(4)若點(diǎn)N為x軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)N作MN⊥x軸與拋物線交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.

【答案】(1) A(1,1), B(2,0),C(-1,-3);(2)證明見解析;(3) 存在滿足條件的點(diǎn)P,( ,

);(4) 存在滿足條件的N點(diǎn),其坐標(biāo)為(5,0)或(-1,0)或(,0)或(,0).

);

【解析】(1)把拋物線解析式化為頂點(diǎn)式可求得A點(diǎn)坐標(biāo),聯(lián)立拋物線與直線的解析式可求得B、C的坐標(biāo);

(2)由A、B、C的坐標(biāo)可求得AB2、BC2和AC2,由勾股定理的逆定理可判定△ABC是直角三角形;

(3)過點(diǎn)P作PG∥y軸,交直線BC于點(diǎn)G,設(shè)出P點(diǎn)坐標(biāo),則可表示出G點(diǎn)坐標(biāo),從而可表示出PG的長,則可表示出△PBC的面積,利用二次函數(shù)的性質(zhì)可求得其最大值時(shí)P點(diǎn)坐標(biāo);

(4)設(shè)出M、N的坐標(biāo),則可表示出MN和ON的長度,由相似三角形的性質(zhì)可得到關(guān)于N點(diǎn)坐標(biāo)的方程可求得N點(diǎn)坐標(biāo).

解:(1)∵y=﹣x2+2x=﹣(x﹣1)2+1,

∴拋物線頂點(diǎn)坐標(biāo)A(1,1),

聯(lián)立拋物線與直線解析式可得,解得

∴B(2,0),C(﹣1,﹣3);

(2)證明:

由(1)可知B(2,0),C(﹣1,﹣3),A(1,1),

∴AB2=(1﹣2)2+12=2,BC2=(﹣1﹣2)2+(﹣3)2=18,

AC2=(﹣1﹣1)2+(﹣3﹣1)2=20,∴AC2=AB2+BC2,

∴△ABC是直角三角形,

∴∠ABC=90°;

(3)如圖,過點(diǎn)P作PG∥y軸,交直線BC于點(diǎn)G,

設(shè)P(t,﹣t2+2t),則G(t,t﹣2),

∵點(diǎn)P在直線BC上方,

∴PG=﹣t2+2t﹣(t﹣2)=﹣t2+t+2=﹣(t﹣2+,

∴S△PBC=S△PGB+S△PGC=PG[2﹣(﹣1)]= PG=﹣(t﹣2+,

∵﹣<0,

∴當(dāng)t=時(shí),S△PBC有最大值,此時(shí)P點(diǎn)坐標(biāo)為(, ),

即存在滿足條件的點(diǎn)P,其坐標(biāo)為(, );

(4)∵∠ABC=∠ONM=90°,

∴當(dāng)△OMN和△ABC相似時(shí),有,

設(shè)N(m,0),

∵M(jìn)N⊥x軸,

∴M(m,﹣m2+2m),

∴MN=|﹣m2+2m|,ON=|m|,

①當(dāng)時(shí),即=,解得m=5或m=﹣1或m=0(舍去);

②當(dāng)時(shí),即=,解得m=或m=或m=0(舍去);

綜上可知存在滿足條件的N點(diǎn),其坐標(biāo)為(5,0)或(﹣1,0)或(,0)或(,0).

“點(diǎn)睛”此題考查了二次函數(shù)的綜合應(yīng)用,涉及了相似三角形的判定與性質(zhì)、勾股定理,解答本題需要我們熟練各個(gè)知識(shí)點(diǎn)的內(nèi)容,認(rèn)真探究題目,謹(jǐn)慎作答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.某一事件發(fā)生的可能性非常大就是必然事件

B.2020127日杭州會(huì)下雪是隨機(jī)事件

C.概率很小的事情不可能發(fā)生

D.投擲一枚質(zhì)地均勻的硬幣1000次,正面朝上的次數(shù)一定是500

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班40名同學(xué)的年齡情況如下表,則這40名同學(xué)的年齡的中位數(shù)是歲.

年齡/歲

14

15

16

17

人數(shù)

4

16

18

2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由于霧霾天氣趨于嚴(yán)重,我市某電器商城根據(jù)民眾健康需求,代理銷售某種家用空氣凈化器,其進(jìn)價(jià)是200元/臺(tái).經(jīng)過市場銷售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400元/臺(tái)時(shí),可售出200臺(tái),且售價(jià)每降低10元,就可多售出50臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于300元/臺(tái),代理銷售商每月要完成不低于450臺(tái)的銷售任務(wù).

(1)完成下列表格,并直接寫出月銷售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式及售價(jià)x的取值范圍;

售價(jià)(元/臺(tái))

月銷售量(臺(tái))

400

200

250

x

(2)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用科學(xué)記數(shù)法表示的數(shù)是5.002×104,則原數(shù)是( )

A. 5002B. 50020C. 500200D. 5002000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為( ),點(diǎn)Q的坐標(biāo)為 ,且 , ,若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的一組對邊與某條坐標(biāo)軸平行,則稱該矩形為點(diǎn)P,Q的“相關(guān)矩形”,圖2及圖3中點(diǎn)A的坐標(biāo)為(4,3).

(1)若點(diǎn)B的坐標(biāo)為(-2,0),則點(diǎn)A,B的“相關(guān)矩形”的面積為;
(2)點(diǎn)C在y軸上,若點(diǎn)A,C的“相關(guān)矩形”的面積為8,求直線AC的解析式;
(3)如圖3,直線 與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,在直線MN上是否存在點(diǎn)D,使點(diǎn)A,D的“相關(guān)矩形”為正方形,如果存在,請求出點(diǎn)D的坐標(biāo),如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長是(
A.2
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】36.32°=°″.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC,ADBCAE平分∠BAC.

(1)若∠B72°,C30°①求∠BAE的度數(shù);②求∠DAE的度數(shù);

(2)探究:如果只知道∠BC42°,也能求出∠DAE的度數(shù)嗎?若能,請你寫出求解過程;若不能,請說明理由

查看答案和解析>>

同步練習(xí)冊答案