【題目】1)如圖,以△ABC的邊AB、AC向外作正方形ABDE和正方形ACFG,試判斷△ABC△AEG面積之間的關(guān)系,并說明理由。

2)園林小路,曲徑通幽,如圖2所示,小路由白色的正方形理石和黑色的三角形理石鋪成.已知中間的所有正方形的面積之和是a平方米,內(nèi)圈的所有三角形的面積之和是b平方米,這條小路一共占地多少平方米?

【答案】1)相等;(2平方米.

【解析】

試題(1)過點CCM⊥ABM,過點GGN⊥EAEA延長線于N,得出△ABC△AEG的兩條高,由正方形的特殊性證明△ACM≌△AGN,是判斷△ABC△AEG面積之間的關(guān)系的關(guān)鍵;

2)同(1)道理知外圈的所有三角形的面積之和等于內(nèi)圈的所有三角形的面積之和,求出這條小路一共占地多少平方米.

試題解析:(1△ABC△AEG面積相等.

理由:過點CCM⊥ABM,過點GGN⊥EAEA延長線于N,則∠AMC=∠ANG=90°,

四邊形ABDE和四邊形ACFG都是正方形,

∴∠BAE=∠CAG=90°,AB=AE,AC=AG,

∵∠BAE+∠CAG+∠BAC+∠EAG=360°,

∴∠BAC+∠EAG=180°,

∵∠EAG+∠GAN=180°

∴∠BAC=∠GAN,

∴△ACM≌△AGN

∴CM=GN,

∵SABC=ABCM,SAEG=AEGN,

∴SABC=SAEG;

2)由(1)知外圈的所有三角形的面積之和等于內(nèi)圈的所有三角形的面積之和.

這條小路的面積為(a+2b)平方米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們來定義一種新運算:對于任意實數(shù)x、y,“※”a※b=(a+1)(b+1)﹣1

(1)計算(﹣3)※9

(2)嘉琪研究運算“※”之后認(rèn)為它滿足交換律,你認(rèn)為她的判斷   (正確、錯誤)

(3)請你幫助嘉琪完成她對運算“※”是否滿足結(jié)合律的證明.

證明:由已知把原式化簡得a※b=(a+1)(b+1)﹣1=ab+a+b

∵(a※b)※c=(ab+a+b)※c=   

a※(b※c)=   

   

運算“※”滿足結(jié)合律.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在路邊安裝路燈,燈柱BC高15m,與燈桿AB的夾角ABC為120°.路燈采用錐形燈罩,照射范圍DE長為18.9m,從D、E兩處測得路燈A的仰角分別為∠ADE=80.5°,∠AED=45°.求燈桿AB的長度.(參考數(shù)據(jù):cos80.5°≈0.2,tan80.5°≈6.0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2015年是中國人民抗日戰(zhàn)爭暨世界反法西斯戰(zhàn)爭勝利70周年,9月3日全國各地將舉行有關(guān)紀(jì)念活動.為了解初中學(xué)生對二戰(zhàn)歷史的知曉情況,某初中課外興趣小組在本校學(xué)生中開展了專題調(diào)查活動,隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)學(xué)生的答題情況,將結(jié)果分為A、B、C、D四類,其中A類表示“非常了解”,B類表示“比較了解”,C類表示“基本了解”;D類表示“不太了解”,調(diào)查的數(shù)據(jù)經(jīng)整理后形成尚未完成的條形統(tǒng)計圖(如圖①)和扇形統(tǒng)計圖(如圖②):
(1)在這次抽樣調(diào)查中,一共抽查了名學(xué)生;
(2)請把圖①中的條形統(tǒng)計圖補充完整;
(3)圖②的扇形統(tǒng)計圖中D類部分所對應(yīng)扇形的圓心角的度數(shù)為;
(4)如果這所學(xué)校共有初中學(xué)生1500名,請你估算該校初中學(xué)生中對二戰(zhàn)歷史“非常了解”和“比較了解”的學(xué)生共有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)計算:(a+b)2﹣b(2a+b)

(2)解不等式:(3x+4)(3x-4)<9(x-2)(x+3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列圖案均是長度相同的火柴按一定的規(guī)律拼搭而成:第1個圖案需7根火柴,第2個圖案需13根火柴,,依此規(guī)律,第11個圖案需( )根火柴.

A. 156 B. 157 C. 158 D. 159

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,AB=2,點D為AB的中點,以點D為圓心作圓心角為90°的扇形DEF,點C恰在弧EF上,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y是x的反比例函數(shù),且x=8時,y=12.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)如果自變量x的取值范圍是2≤x≤3,求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 的直徑, 是弦, , .若用扇形 (圖中陰影部分)圍成一個圓錐的側(cè)面,則這個圓錐底面圓的半徑是

查看答案和解析>>

同步練習(xí)冊答案