【題目】如圖,在四邊形ABCD中,AB∥CD,且AB=2CD,E,F分別是AB,BC的中點(diǎn),EF與BD交于點(diǎn)H.
(1)求證:四邊形DEBC是平行四邊形;
(2)若BD=6,求DH的長.
【答案】(1)見解析;(2)DH=4.
【解析】
(1)由AB=2CD,E是AB的中點(diǎn)得出DC=BE,再結(jié)合AB∥CD即可得證;
(2)先證△EDM∽△FBM得,由BC=DE,F為BC的中點(diǎn)得出=2,繼而知DH=2HB,結(jié)合DH+HB=6可得答案.
(1)∵E是AB的中點(diǎn),
∴AB=2EB,
∵AB=2CD,
∴DC=BE,
又∵AB∥CD,即DC∥BE,
∴四邊形BCDE是平行四邊形.
(2)∵四邊形BCDE是平行四邊形,
∴BC=DE,BC∥DE,
∴△EDM∽△FBM,
∴,
∵BC=DE,F為BC的中點(diǎn),
∴BF=BC=DE,
∴=2,
∴DH=2HB,
又∵DH+HB=6,
∴DH=4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程(x-2)(x-3)=m有實(shí)數(shù)根x1,x2,且x1≠x2.
(1)求m的取值范圍;
(2)如果這個方程的兩個實(shí)根分別為x1=α,x2=β,且α<β,當(dāng)m>0時,試比較α,β,2,3的大小,并用“<”連接;
(3)求二次函數(shù)y=(x-x1)(x-x2)+m的圖像與x軸的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在等腰直角三角形中,,,D,E分別在上,且,此時有,.
(1)如圖①中 繞點(diǎn)A旋轉(zhuǎn)至如圖②時上述結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由.
(2)將圖①中的繞點(diǎn)A旋轉(zhuǎn)至DE與直線AC垂直,直線BD交CE于點(diǎn)F,若,,請畫出圖形,并求出BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市304國道通遼至霍林郭勒段在修建過程中經(jīng)過一座山峰,如圖所示,其中山腳A、C兩地海拔高度約為1000米,山頂B處的海拔高度約為1400米,由B處望山腳A處的俯角為30°,由B處望山腳C處的俯角為45°,若在A、C兩地間打通一隧道,求隧道最短為多少米(結(jié)果取整數(shù),參考數(shù)據(jù)≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個直角三角形紙片OAB,其中∠AOB=90°,OA=2,OB=4.如圖,將該紙片放置在平面直角坐標(biāo)系中,折疊該紙片,折痕與邊OB交于點(diǎn)C,與邊AB交于點(diǎn)D.
(1)若折疊后使點(diǎn)B與點(diǎn)A重合,求點(diǎn)C的坐標(biāo);
(2)若折疊后點(diǎn)B落在邊OA上的點(diǎn)為B′,設(shè)OB′=x,OC=y,試寫出y關(guān)于x的函數(shù)解析式,并確定y的取值范圍;
(3)若折疊后點(diǎn)B落在邊OA上的點(diǎn)為B′,且使B′D//OB,求此時點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O是邊長為2的正方形ABCD的中心.函數(shù)y=(x﹣h)2的圖象與正方形ABCD有公共點(diǎn),則h的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a<0)的圖象與x軸的兩個交點(diǎn)A、B的橫坐標(biāo)分別為﹣3、1,與y軸交于點(diǎn)C,下面四個結(jié)論:①16a+4b+c<0;②若P(﹣5,y1),Q(,y2)是函數(shù)圖象上的兩點(diǎn),則y1>y2;③c=﹣3a;④若△ABC是等腰三角形,則b=﹣或﹣.其中正確的有_____.(請將正確結(jié)論的序號全部填在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將△ABC紙片沿中位線EH折疊,使點(diǎn)A對稱點(diǎn)D落在BC邊上,再將紙片分別沿等腰△BED和等腰△DHC的底邊上的高線EF,HG折疊,折疊后的三個三角形拼合形成一個矩形,類似地,對多邊形進(jìn)行折疊,若翻折后的圖形恰能拼合成一個無縫隙、無重疊的矩形,這樣的矩形稱為疊合矩形.
(1)將□ABCD紙片按圖2的方式折疊成一個疊合矩形AEFG,則操作形成的折痕分別是線段_______,_________;S矩形AEFG:S□ABCD=__________.
(2)□ABCD紙片還可以按圖3的方式折疊成一個疊合矩形EFGH,若EF=5,EH=12,求AD的長;
(3)如圖4,四邊形ABCD紙片滿足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把該紙片折疊,得到疊合正方形,請你幫助畫出一種疊合正方形的示意圖,并求出AD、BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com