【題目】已知拋物線與軸、軸分別相交于點A(-1,0)和B(0,3),其頂點為D。
(1)求這條拋物線的解析式;
(2)畫出此拋物線;
(3)若拋物線與軸的另一個交點為E,求△ODE的面積;
(4)拋物線的對稱軸上是否存在點P使得△PAB的周長最短。若存在請求出點P的坐標,若不存在,說明理由.
【答案】(1)y=﹣x2+2x+3 ;(2)如圖所示,見解析;(3)S△ODE=6;(4)存在,點P坐標(1,2).
【解析】
(1)將點A、B的坐標代入求出b,c即可;
(2)描點、畫圖即可;
(3)令y=0求出x的值,可得E點坐標,把拋物線一般式化成頂點式可得頂點D的坐標,然后根據三角形面積公式計算即可;
(4)連接BE交拋物線的對稱軸x=1于點P,此時PA+PB的值最小,即△PAB的周長最短,求出直線BE的解析式,然后即可解決問題.
解:(1)根據題意得,
解得,
∴拋物線解析式為y=﹣x2+2x+3;
(2)如圖所示:
(3)當y=0時,即﹣x2+2x+3=0,
解得:x1=﹣1,x2=3,
∴E(3,0),
∵拋物線y=﹣x2+2x+3=﹣(x﹣1)2 + 4,
∴頂點坐標D(1,4),
∴S△ODE=×3×4=6;
(4)連接BE交拋物線的對稱軸x=1于點P,如圖,此時PA+PB的值最小,即△PAB的周長最短,
設直線BE的解析式為y=kx+b(k≠0),
則,解得:,
∴直線BE的解析式為:y=﹣x+3,
當x=1時,y=﹣x+3=2,
∴點P坐標為(1,2).
科目:初中數學 來源: 題型:
【題目】如圖,點D在△ABC的邊AC上,要判斷△ADB與△ABC相似,添加一個條件,不正確的是( )
A.∠ABD=∠CB.∠ADB=∠ABCC.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,直角三角形AOB中,∠AOB=90°,AB平行于x軸,OA=2OB,AB=5,反比例函數的圖象經過點A.
(1)直接寫出反比例函數的解析式;
(2)如圖②,P(x,y)在(1)中的反比例函數圖象上,其中1<x<8,連接OP,過O 作OQ⊥OP,且OP=2OQ,連接PQ.設Q坐標為(m,n),其中m<0,n>0,求n與m的函數解析式,并直接寫出自變量m的取值范圍;
(3)在(2)的條件下,若Q坐標為(m,1),求△POQ的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC 中,AB=AC,以AB為直徑作⊙O,與BC交于點D,過D作AC的垂線,垂足為E.
證明:(1)BD=DC;(2)DE是⊙O切線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】九年級孟老師數學小組經過市場調查,得到某種運動服的月銷量y(件)是售價x(元/件)的一次函數,其售價、月銷售量、月銷售利潤w(元)的三組對應值如下表:
售價x(元/件) | 130 | 150 | 180 |
月銷售量y(件) | 210 | 150 | 60 |
月銷售利潤w(元) | 10500 | 10500 | 6000 |
注:月銷售利潤=月銷售量×(售價﹣進價)
(1)①求y關于x的函數解析式(不要求寫出自變量的取值范圍);
②運動服的進價是 元/件;當售價是 元/件時,月銷利潤最大,最大利潤是 元.
(2)由于某種原因,該商品進價降低了m元/件(m>0),商家規(guī)定該運動服售價不得低于150元/件,該商店在今后的售價中,月銷售量與售價仍滿足(1)中的函數關系式,若月銷售量最大利潤是12000元,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:△ABC是邊長為4的等邊三角形,點O在邊AB上,⊙O過點B且
分別與邊AB,BC相交于點D,E,EF⊥AC,垂足為F.
(1)求證:直線EF是⊙O的切線;
(2)當直線DF與⊙O相切時,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在正方形ABCD中、點E是BC邊上一點,F為AB延長線上一點,且BE=BF,連接AE、EF、CF.
(1)若∠BAE=18°,求∠EFC的度數;
(2)求證:AE⊥CF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了推進球類運動的發(fā)展,某校組織校內球類運動會,分籃球、足球、排球、羽毛球、乒乓球五項,要求每位學生必須參加一項并且只能參加一項,某班有一名學生根據自己了解的班內情況繪制了如圖所示的完整統(tǒng)計表和扇形統(tǒng)計圖.
請根據圖表中提供的信息,解答下列問題:
(1)圖表中 , ;
(2)該班參加乒乓球活動的4位同學中,有3位男同學(分別用,,表示)和1位女同學(用表示),現準備從中選出兩名同學參加比賽,用樹狀圖或列表法求出恰好選出一男一女的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com