【題目】某廠為了解工人在單位時間內(nèi)加工同一種零件的技能水平,隨機抽取了50名工人加工的零件進行檢測,統(tǒng)計出他們各自加工的合格品數(shù)是1到8這八個整數(shù),現(xiàn)提供統(tǒng)計圖的部分信息如圖.

請解答下列問題:
(1)根據(jù)統(tǒng)計圖,寫出這50名工人加工出的合格品數(shù)的中位數(shù).
(2)寫出這50名工人加工出合格品數(shù)的眾數(shù)的可能取值.
(3)廠方認(rèn)定,工人在單位時間內(nèi)加工出的合格品數(shù)不低于2件為技能合格,否則,將接受技能再培訓(xùn),已知該廠有同類工人400名,請估計該廠將接受技能再培訓(xùn)的人數(shù).

【答案】
(1)

解:∵把合格品數(shù)從小到大排列,第25,26個數(shù)都為4,

∴中位數(shù)為4


(2)

解:眾數(shù)要看剩余的18人可能落在哪里,有可能合格品是5的有10人,合格品是6的有8人,或合格品是5的有8人,合格品是6的有10人,

所以推出4,5,6;4和5;4和6都可能為眾數(shù).

故眾數(shù)可能為4,5,6;4和5;4和6


(3)

解:這50名工人中,合格品低于2件的人數(shù)為2人,

故該廠將接受再培訓(xùn)的人數(shù)約有400× =16(人)


【解析】(1)將合格品數(shù)從小到大排列,找出第25與26個數(shù),求出平均數(shù)即可求出中位數(shù);(2)眾數(shù)的話要看剩余的18人可能落在哪里,有可能合格品是5的有10人,合格品是6的有8人,或合格品是5的有8人,合格品是6的有10人,所以推出4,5,6都可能為眾數(shù);(3)50名工人中,合格品低于2件的有2人,除以50人求出百分比,再乘以400即可求出所求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kx﹣1的圖象經(jīng)過點P,且y的值隨x值的增大而增大,則點P的坐標(biāo)可以為( 。

A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘米,乙在A地時距地面的高度b為米.
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式.
(3)登山多長時間時,甲、乙兩人距地面的高度差為50米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下列推理過程:

已知:如圖,∠1+2=180°,3=B

求證:∠EDG+DGC=180°

證明:∵∠1+2=180°(已知)

1+DFE=180°(   

∴∠2=      

EFAB(   

∴∠3=      

又∵∠3=B(已知)

∴∠B=ADE(   

DEBC(   

∴∠EDG+DGC=180°(   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以長方形OBCD的頂點O為坐標(biāo)原點建立平面直角坐標(biāo)系,B點坐標(biāo)為(0,a),C點坐標(biāo)為(c,b),且a、b、C滿足+|2b+12|+(c﹣4)2=0.

(1)求B、C兩點的坐標(biāo);

(2)動點P從點O出發(fā),沿O→B→C的路線以每秒2個單位長度的速度勻速運動,設(shè)點P的運動時間為t秒,DC上有一點M(4,﹣3),用含t的式子表示三角形OPM的面積;

(3)當(dāng)t為何值時,三角形OPM的面積是長方形OBCD面積的?直接寫出此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BDAC D,EFAC FAMD=AGF1=2=35°

1)求∠GFC的度數(shù)

2)求證:DMBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖,在平面直角坐標(biāo)系中,對進行循環(huán)往復(fù)的軸對稱變換,若原來點A坐標(biāo)是,則經(jīng)過第2019次變換后所得的A點坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABCD,點EAB,CD之外任意一點.

(1)如圖1,探究∠BED與∠B,D的數(shù)量關(guān)系,并說明理由;

(2)如圖2,探究∠CDE與∠B,E的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點D,過點D作⊙O的切線,交AB于點E,交CA的延長線于點F.
(1)求證:EF⊥AB;
(2)若∠C=30°,EF= ,求EB的長.

查看答案和解析>>

同步練習(xí)冊答案