【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),則:①二次函數(shù)的最大值為a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④當(dāng)y>0時(shí),﹣l<x<3,其中正確的是( 。
A.①②④B.②④C.①④D.②③
【答案】C
【解析】
由圖象可知,當(dāng)x=1時(shí),y=a+b+c最大,故①正確;當(dāng)x=﹣1時(shí),y=a+b+c=0,故②錯誤;二次函數(shù)與x軸有兩個(gè)不同交點(diǎn),因此b2﹣4ac>0,故③錯誤;對稱軸為x=1,B(﹣1,0),所以A(3,0),由圖象可得,y>0時(shí),﹣l<x<3,故④正確.
解:①當(dāng)x=1時(shí),y=a+b+c最大,故①正確;
②∵B(﹣1,0),∴當(dāng)x=﹣1時(shí),y=a+b+c=0,故②錯誤;
③∵二次函數(shù)與x軸有兩個(gè)不同交點(diǎn),∴b2﹣4ac>0,故③錯誤;
④∵對稱軸為x=1,B(﹣1,0),∴A(3,0),由圖象可得,y>0時(shí),﹣l<x<3,故④正確.
故正確的由①④.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測量山坡上的電線桿PQ的高度,某數(shù)學(xué)活動小組的同學(xué)們帶上自制的測傾器和皮尺來到山腳下,他們在A處測得信號塔頂端P的仰角是45°,信號塔底端點(diǎn)Q的仰角為30°,沿水平地面向前走100米到B處,測得信號塔頂端P的仰角是60°,求信號塔PQ得高度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】愛好數(shù)學(xué)的甲、乙兩個(gè)同學(xué)做了一個(gè)數(shù)字游戲:拿出三張正面寫有數(shù)字﹣1,0,1且背面完全相同的卡片,將這三張卡片背面朝上洗勻后,甲先隨機(jī)抽取一張,將所得數(shù)字作為p的值,然后將卡片放回并洗勻,乙再從這三張卡片中隨機(jī)抽取一張,將所得數(shù)字作為q值,兩次結(jié)果記為.
(1)請你幫他們用樹狀圖或列表法表示所有可能出現(xiàn)的結(jié)果;
(2)求滿足關(guān)于x的方程沒有實(shí)數(shù)根的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+2與y軸交于A點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)M,過M作MH⊥x軸于點(diǎn)H,且tan∠AHO=2.
(1)求k的值;
(2)在y軸上是否存在點(diǎn)B,使以點(diǎn)B、A、H、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出B點(diǎn)坐標(biāo);如果不存在,請說明理由;
(3)點(diǎn)N(a,1)是反比例函數(shù)y=(x>0)圖象上的點(diǎn),在x軸上有一點(diǎn)P,使得PM+PN最小,請求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】日照間距系數(shù)反映了房屋日照情況.如圖①,當(dāng)前后房屋都朝向正南時(shí),日照間距系數(shù)=L:(H﹣H1),其中L為樓間水平距離,H為南側(cè)樓房高度,H1為北側(cè)樓房底層窗臺至地面高度.
如圖②,山坡EF朝北,EF長為15m,坡度為i=1:0.75,山坡頂部平地EM上有一高為22.5m的樓房AB,底部A到E點(diǎn)的距離為4m.
(1)求山坡EF的水平寬度FH;
(2)欲在AB樓正北側(cè)山腳的平地FN上建一樓房CD,已知該樓底層窗臺P處至地面C處的高度為0.9m,要使該樓的日照間距系數(shù)不低于1.25,底部C距F處至少多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于點(diǎn)B,AC邊上一點(diǎn)O,⊙O經(jīng)過點(diǎn)B、C,與AC交于點(diǎn)D,與CE交于點(diǎn)F,連結(jié)BF。
(1)求證:AE是⊙O的切線;
(2)若,AE=8,求⊙O的半徑;
(3)在(2)條件下,求BF的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過O點(diǎn)作OF⊥AB交⊙O于點(diǎn)D,交AC于點(diǎn)E,交BC的延長線于點(diǎn)F,點(diǎn)G是EF的中點(diǎn),連接CG
(1)判斷CG與⊙O的位置關(guān)系,并說明理由;
(2)求證:2OB2=BCBF;
(3)如圖2,當(dāng)∠DCE=2∠F,CE=3,DG=2.5時(shí),求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一款優(yōu)雅且穩(wěn)定的拋物線型落地?zé)簦阑菽?/span>C為拋物線支架的最高點(diǎn),燈罩D距離地面1.86米,燈柱AB及支架的相關(guān)數(shù)據(jù)如圖2所示.若茶幾擺放在燈罩的正下方,則茶幾到燈柱的距離AE為________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】調(diào)查作業(yè):了解你所住小區(qū)家庭3月份用氣量情況
小天、小東和小蕓三位同學(xué)住在同一小區(qū),該小區(qū)共有300戶家庭,每戶家庭人數(shù)在2~5之間,這300戶家庭的平均人數(shù)約為3.3.
小天、小東、小蕓各自對該小區(qū)家庭3月份用氣量情況進(jìn)行了抽樣裯查,將收集的數(shù)據(jù)進(jìn)行了整理,繪制的統(tǒng)計(jì)表分別為表1、表2和表3.
表1抽樣調(diào)查小區(qū)4戶家庭3月份用氣量統(tǒng)計(jì)表(單位:m3)
家庭人數(shù) | 2 | 3 | 4 | 5 |
用氣量 | 14 | 19 | 21 | 26 |
表2抽樣調(diào)查小區(qū)15戶家庭3月份用氣量統(tǒng)計(jì)表(單位:m3)
家庭人數(shù) | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 |
用氣量 | 10 | 11 | 15 | 13 | 14 | 15 | 15 | 17 | 17 | 18 | 18 | 18 | 20 | 22 |
表3抽樣調(diào)查小區(qū)15戶家庭3月份用氣量統(tǒng)計(jì)表(單位:m3)
家庭人數(shù) | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 |
用氣量 | 10 | 12 | 13 | 14 | 17 | 17 | 18 | 20 | 20 | 21 | 22 | 26 | 31 | 28 | 31 |
根據(jù)以|材料回答問題:
(1)小天、小東和小蕓三人中,哪位同學(xué)抽樣調(diào)查的數(shù)據(jù)能較好地反映出該小區(qū)家庭3月份用氣量情況?請簡要說明其他兩位同學(xué)抽樣調(diào)查的不足之處.
(2)在表3中,調(diào)查的15個(gè)家庭中使用氣量的中位數(shù)是 m3,眾數(shù)是 m3.
(3)小東將表2中的數(shù)據(jù)按用氣量x(m3)大小分為三類.
①節(jié)約型:10≤x≤13,②適中型:14≤x≤17,③偏高型:18≤x≤22,并繪制成如圖扇形統(tǒng)訃圖,請幫助他將扇形圖補(bǔ)充完整.
(4)小蕓算出表3中3月份平均每人的用氣量為6m3,請估計(jì)該小區(qū)3月份的總用氣量.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com