【題目】已知BC是⊙O的直徑,點(diǎn)D是BC延長(zhǎng)線(xiàn)上一點(diǎn),AB=AD,AE是⊙O的弦,∠AEC=30°.
(1)求證:直線(xiàn)AD是⊙O的切線(xiàn);
(2)若AE⊥BC,垂足為M,⊙O的半徑為4,求AE的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2).
【解析】(1)先求出∠ABC=30°,進(jìn)而求出∠BAD=120°,即可求出∠OAB=30°,結(jié)論得證;
(2)先求出∠AOC=60°,用三角函數(shù)求出AM,再用垂徑定理即可得出結(jié)論.
(1)如圖,
∵∠AEC=30°,
∴∠ABC=30°,
∵AB=AD,
∴∠D=∠ABC=30°,
根據(jù)三角形的內(nèi)角和定理得,∠BAD=120°,
連接OA,∴OA=OB,
∴∠OAB=∠ABC=30°,
∴∠OAD=∠BAD﹣∠OAB=90°,
∴OA⊥AD,
∵點(diǎn)A在⊙O上,
∴直線(xiàn)AD是⊙O的切線(xiàn);
(2)連接OA,∵∠AEC=30°,
∴∠AOC=60°,
∵BC⊥AE于M,
∴AE=2AM,∠OMA=90°,
在Rt△AOM中,AM=OAsin∠AOM=4×sin60°=2,
∴AE=2AM=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD是⊙O的切線(xiàn),點(diǎn)C在直徑AB的延長(zhǎng)線(xiàn)上.
(1)求證:∠CAD=∠BDC;
(2)若BD=AD,AC=3,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從白塔山山頂A外測(cè)得正前方的長(zhǎng)江兩岸B、C的俯角分別為30°,75°,白塔山的高度AD是600m,則長(zhǎng)江的寬度BC等于( 。
A. 300(+1)m B. 1200(﹣1)m C. 1800(﹣1)m D. 2400(﹣1)m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0),B(3,0),與y軸交于點(diǎn)C,拋物線(xiàn)的頂點(diǎn)為P.
(1)如圖1,連接AP,分別求出拋物線(xiàn)與直線(xiàn)AP的解析式;
(2)如圖1,點(diǎn)D(2,3)在拋物線(xiàn)上,在第一象限內(nèi),直線(xiàn)AP上是否存在點(diǎn)E,使DE⊥EO?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)如圖2,連接BC與拋物線(xiàn)的對(duì)稱(chēng)軸交于點(diǎn)F,在對(duì)稱(chēng)軸右側(cè)的拋物線(xiàn)上是否存在點(diǎn)G,使△GPF與△GBF的面積相等?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點(diǎn),且A,B兩點(diǎn)的橫坐標(biāo)分別是2和4,則△OAB的面積是( 。
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】參照學(xué)習(xí)函數(shù)的過(guò)程與方法,探究函數(shù)y=的圖象與性質(zhì).
因?yàn)?/span>y=,即y=﹣+1,所以我們對(duì)比函數(shù)y=﹣來(lái)探究.
列表:
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | ﹣ | 1 | 2 | 3 | 4 | … | |
y=﹣ | … | 1 | 2 | 4 | ﹣4 | ﹣1 | 1 | ﹣ | ﹣ | … | ||
y= | … | 2 | 3 | 5 | ﹣3 | ﹣1 | 0 | … |
描點(diǎn):在平面直角坐標(biāo)系中,以自變量x的取值為橫坐標(biāo),以y=相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點(diǎn),如圖所示:
(1)請(qǐng)把y軸左邊各點(diǎn)和右邊各點(diǎn),分別用一條光滑曲線(xiàn)順次連接起來(lái);
(2)觀(guān)察圖象并分析表格,回答下列問(wèn)題:
①當(dāng)x<0時(shí),y隨x的增大而 ;(填“增大”或“減小”)
②y=的圖象是由y=﹣的圖象向 平移 個(gè)單位而得到;
③圖象關(guān)于點(diǎn) 中心對(duì)稱(chēng).(填點(diǎn)的坐標(biāo))
(3)設(shè)A(x1,y1),B(x2,y2)是函數(shù)y=的圖象上的兩點(diǎn),且x1+x2=0,試求y1+y2+3的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某個(gè)數(shù)值轉(zhuǎn)換器的原理如圖所示:若開(kāi)始輸入x的值是1,第1次輸出的結(jié)果是4,第2次輸出的結(jié)果是2,依次繼續(xù)下去,則第2020次輸出的結(jié)果是( 。
A.1010B.4C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:
在平面直角坐標(biāo)系xOy中有不重合的兩點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2),小明在學(xué)習(xí)中發(fā)現(xiàn),若x1=x2,則AB∥y軸,且線(xiàn)段AB的長(zhǎng)度為|y1﹣y2|;若y1=y2,則AB∥x軸,且線(xiàn)段AB的長(zhǎng)度為|x1﹣x2|;
(應(yīng)用):
(1)若點(diǎn)A(﹣1,1)、B(2,1),則AB∥x軸,AB的長(zhǎng)度為 .
(2)若點(diǎn)C(1,0),且CD∥y軸,且CD=2,則點(diǎn)D的坐標(biāo)為 .
(拓展):
我們規(guī)定:平面直角坐標(biāo)系中任意不重合的兩點(diǎn)M(x1,y1),N(x2,y2)之間的折線(xiàn)距離為d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:圖1中,點(diǎn)M(﹣1,1)與點(diǎn)N(1,﹣2)之間的折線(xiàn)距離為d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.
解決下列問(wèn)題:
(1)已知E(2,0),若F(﹣1,﹣2),求d(E,F);
(2)如圖2,已知E(2,0),H(1,t),若d(E,H)=3,求t的值;
(3)如圖3,已知P(3,3),點(diǎn)Q在x軸上,且三角形OPQ的面積為3,求d(P,Q).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀(guān)察下面三行數(shù)
①
②
③
第①行的第個(gè)數(shù)可表示為 ;
第②③行數(shù)與第①行數(shù)分別有什么關(guān)系?
取每行的第個(gè)數(shù),從上到下依次把這三個(gè)數(shù)記為,當(dāng)時(shí),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com