【題目】如圖,在菱形紙片ABCD中,AB=2,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則cos∠EFG的值為 .
【答案】
【解析】解:連接BE、AE交FG于點O,
∵菱形ABCD中,AB=2,∠A=60°,E為CD中點,
∴BE⊥CD,CE=1,BC=2,∠C=60°,∠ABC=120°,
∴BE=,∠CBE=30°,
∴∠FBE=90°,
∴AE===.
∵△AGF翻折至△EGF,
∴△AGF≌△EGF,
∴AF=EF,∠AFG=∠EFG,
在Rt△EBF中,設(shè)BF=x,則AF=EF=2-x,
∴(2-x)2=x2+()2
∴x=,EF=,
又∵AG=EG,AF=EF,
∴GF垂直平分AE,
∴EO=.
∴FO===
在Rt△EOF中.
∴cos∠EFG==.
所以答案是:.
【考點精析】掌握等腰三角形的性質(zhì)和勾股定理的概念是解答本題的根本,需要知道等腰三角形的兩個底角相等(簡稱:等邊對等角);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個藝術(shù)窗的一部分,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大正方形的邊長為5cm,則正方形A、B、C、D的面積和是 _____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,點D在邊AC上,AD=5,DE⊥BC于點E,連結(jié)AE,則△ABE的面積等于 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0)的圖象如圖所示,下列結(jié)論:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正確的結(jié)論有______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com