如圖1,點(diǎn)O是邊長為1的等邊△ABC內(nèi)的任一點(diǎn),設(shè)∠AOB=°,∠BOC=°
(1)將△BOC繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)60°得△ADC,連結(jié)OD,如圖2所示. 求證:OD=OC。
(2)在(1)的基礎(chǔ)上,將△ABC繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)60°得△EAC,連結(jié)DE,如圖3所示. 求證:OA=DE
(3)在(2)的基礎(chǔ)上, 當(dāng)、滿足什么關(guān)系時(shí),點(diǎn)B、O、D、E在同一直線上。并直接寫出AO+BO+CO的最小值。
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得CO=CD,∠DOC=60°,即得△COD是等邊三角形,問題得證;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得△ADC≌△BOC,△EAC≌△ABC,則可得AD=BO,∠DAC=∠OBC,EA=AB,∠EAC=∠ABC,即可證得△EAD≌△ABO,問題得證;(3)
【解析】
試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得CO=CD,∠DOC=60°,即得△COD是等邊三角形,問題得證;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得△ADC≌△BOC,△EAC≌△ABC,則可得AD=BO,∠DAC=∠OBC,EA=AB,∠EAC=∠ABC,即可證得△EAD≌△ABO,問題得證;
(3)根據(jù)全等三角形的性質(zhì)可得∠ADC=∠BOC=,∠EDA=∠AOB=,即得∠CDE=,由△COD是等邊三角形可得∠COD=∠CDO=60°,若點(diǎn)B、O、D、E在同一直線上,則∠BOC=∠CDE=120°,即,得 ,從而可以求得結(jié)果.
(1)∵△BOC繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)60°得△ADC
∴CO=CD,∠DOC=60°
∴△COD是等邊三角形
∴OD=OC;
(2)∵△BOC繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)60°得△ADC
△ABC繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)60°得△EAC
∴△ADC≌△BOC,△EAC≌△ABC
∴AD=BO,∠DAC=∠OBC,EA=AB,∠EAC=∠ABC
∴∠EAC-∠DAC=∠ABC-∠OBC即∠DAE=∠OBA
∴△EAD≌△ABO
∴OA=DE;
(3)∵△ADC≌△BOC,△EAD≌△ABO
∴∠ADC=∠BOC=,∠EDA=∠AOB=
∴∠CDE=
∵△COD是等邊三角形
∴∠COD=∠CDO=60°
若點(diǎn)B、O、D、E在同一直線上,則∠BOC=∠CDE=120°
即,得
AO+BO+CO的最小值為.
考點(diǎn):旋轉(zhuǎn)問題的綜合題
點(diǎn)評:此類問題是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆浙江杭州余杭星橋中學(xué)九年級下學(xué)期階段性測試數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖1,點(diǎn)O是邊長為1的等邊△ABC內(nèi)的任一點(diǎn),設(shè)∠AOB=°,∠BOC=°
(1)將△BOC繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)60°得△ADC,連結(jié)OD,如圖2所示. 求證:OD=OC。
(2)在(1)的基礎(chǔ)上,將△ABC繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)60°得△EAC,連結(jié)DE,如圖3所示. 求證:OA=DE
(3)在(2)的基礎(chǔ)上, 當(dāng)、滿足什么關(guān)系時(shí),點(diǎn)B、O、D、E在同一直線上。并直接寫出AO+BO+CO的最小值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年浙江省杭州市中考數(shù)學(xué)預(yù)測試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com