【題目】如圖,已知AB為⊙O的直徑,AB=2,AD和BE是圓O的兩條切線,A、B為切點,過圓上一點C作⊙O的切線CF,分別交AD、BE于點M、N,連接AC、CB,若∠ABC=30°,則AM=

【答案】
【解析】解:連接OM,OC,

∵OB=OC,且∠ABC=30°,

∴∠BCO=∠ABC=30°,

∵∠AOC為△BOC的外角,

∴∠AOC=2∠ABC=60°,

∵MA,MC分別為圓O的切線,

∴MA=MC,且∠MAO=∠MCO=90°,

在Rt△AOM和Rt△COM中,

∴Rt△AOM≌Rt△COM(HL),

∴∠AOM=∠COM= ∠AOC=30°,

在Rt△AOM中,OA= AB=1,∠AOM=30°,

∴tan30°= ,即 =

解得:AM=

所以答案是:

【考點精析】本題主要考查了含30度角的直角三角形和切線的性質(zhì)定理的相關(guān)知識點,需要掌握在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半;切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知在四邊形中,,.

(1)如圖1.連接,若,求證:.

(2)如圖2,點分別在線段上,滿足,求證:;

(3)若點的延長線上,點的延長線上,如圖3所示,仍然滿足,請寫出的數(shù)量關(guān)系,并給出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小明在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度 ,AB=10米,AE=15米.

(1)求點B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測角器的高度忽略不計,結(jié)果精確到0.1米.參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】202l屆數(shù)學組的老師們?yōu)榱伺臄z《燃燒我的數(shù)學》的MTV,從全年級選了m人(m200)進行隊列變換,現(xiàn)把m人排成一個10排的矩形隊列,每排人數(shù)相等,然后把這個矩形隊列平均分成AB兩個隊列,如果從A隊列中抽調(diào)36人到B隊列,這樣A、B隊列都可以形成一個正方形隊列,則m的值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABy=3x+3x軸于點A;直線y=-x平移后經(jīng)過點B,交x軸于點C70),另一直線y=kx-kx軸于點D,交直線BC于點E,連接DB,BDx軸.

1)求直線BC的解析式和點B的坐標;

2)若直線DEBDC的面積分為12的兩部分,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABCD,點MN分別是AB、CD上兩點,點GABCD之間,連接MGNG

1)如圖1,若GMGN,求∠AMG+∠CNG的度數(shù);

2)如圖2,若點PCD下方一點,MG平分∠BMPND平分∠GNP,已知∠BMG30°,求∠MGN+∠MPN的度數(shù);

3)如圖3,若點EAB上方一點,連接EM、EN,且GM的延長線MF平分∠AME,NE平分∠CNG,2MEN+∠MGN105°,求∠AME的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4 米.

(1)求新傳送帶AC的長度.
(2)如果需要在貨物著地點C的左側(cè)留出2米的通道,試判斷距離B點5米的貨物MNQP是否需要挪走,并說明理由.
參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列式子的因式分解做法:

①x2-1=(x-1)(x+1);

②x31

=x3x+x1

=xx21+x1

=xx1)(x+1+x1

=x1[xx+1+1]

=x1)(x2+x+1);

③x41

=x4x+x1

=xx31+x1

=xx1)(x2+x+1+x1

=x1[xx2+x+1+1]

=x1)(x3+x2+x+1);

1)模仿以上做法,嘗試對x51進行因式分解;

2)觀察以上結(jié)果,猜想xn1= ;(n為正整數(shù),直接寫結(jié)果,不用驗證)

3)根據(jù)以上結(jié)論,試求45+44+43+42+4+1的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面的證明.(在括號中注明理由)

已知:如圖,BECD,∠A=∠1,

求證:∠C=∠E

證明:∵BECD,(已知)

∴∠2=∠C,(   

又∵∠A=∠1,(已知)

AC   ,(   

∴∠2   ,(   

∴∠C=∠E(等量代換)

查看答案和解析>>

同步練習冊答案