【題目】如圖,△ABC是等邊三角形,AO⊥BC,垂足為點(diǎn)O,⊙O與AC相切于點(diǎn)D,BE⊥AB交AC的延長(zhǎng)線于點(diǎn)E,與⊙O相交于G、F兩點(diǎn).
(1)求證:AB與⊙O相切;
(2)若等邊三角形ABC的邊長(zhǎng)是4,求線段BF的長(zhǎng)?
【答案】
(1)證明:過(guò)點(diǎn)O作OM⊥AB,垂足是M.
∵⊙O與AC相切于點(diǎn)D.
∴OD⊥AC,
∴∠ADO=∠AMO=90°.
∵△ABC是等邊三角形,
∴∠DAO=∠MAO,
∴OM=OD.
∴AB與⊙O相切
(2)解:過(guò)點(diǎn)O作ON⊥BE,垂足是N,連接OF.
∵AB=AC,AO⊥BC,
∴O是BC的中點(diǎn),
∴OB=2.
在直角△OBM中,∠MBO=60°,
∴OM=OBsin60°= ,BM=OBcos60°=1.
∵BE⊥AB,
∴四邊形OMBN是矩形.
∴ON=BM=1,BN=OM= .
∵OF=OM= ,
由勾股定理得NF= .
∴BF=BN+NF= + .
【解析】(1)過(guò)點(diǎn)O作OM⊥AB,垂足是M,證明OM等于圓的半徑OD即可;(2)過(guò)點(diǎn)O作ON⊥BE,垂足是N,連接OF,則四邊形OMBN是矩形,在直角△OBM利用三角函數(shù)求得OM和BM的長(zhǎng),則BN和ON即可求得,在直角△ONF中利用勾股定理求得NF,則BF即可求解.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用勾股定理的概念和解直角三角形的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC為等邊三角形,AB=2,點(diǎn)D為邊AB上一點(diǎn),過(guò)點(diǎn)D作DE∥AC,交BC于E點(diǎn);過(guò)E點(diǎn)作EF⊥DE,交AB的延長(zhǎng)線于F點(diǎn).設(shè)AD=x,△DEF的面積為y,則能大致反映y與x函數(shù)關(guān)系的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰三角形ABC底邊BC的長(zhǎng)為4cm,面積是12cm2,腰AB的垂直平分線EF交AC于點(diǎn)F,若D為BC邊上的中點(diǎn),M為線段EF上一動(dòng)點(diǎn),則△BDM的周長(zhǎng)最短為______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工程隊(duì)(有甲、乙兩組)承包一項(xiàng)工程,規(guī)定若干天內(nèi)完成.
①已知甲組單獨(dú)完成這項(xiàng)工程所需時(shí)間比規(guī)定時(shí)間多30天,乙組單獨(dú)完成這項(xiàng)工程所需時(shí)間比規(guī)定時(shí)間多12天,如果甲乙兩組先合做20天,剩下的由甲組單獨(dú)做,恰好按規(guī)定的時(shí)間完成,那么規(guī)定的時(shí)間是多少天?
②實(shí)際工作中,甲乙兩組合做完成這項(xiàng)工程的后,工程隊(duì)又承包了新工程,需要抽調(diào)一組過(guò)去,從按時(shí)完成任務(wù)考慮,你認(rèn)為留下哪一組更好?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,∠AOB=30°,點(diǎn)A坐標(biāo)為(2,0),過(guò)A作AA1⊥OB,垂足為點(diǎn)A1;過(guò)點(diǎn)A1作A1A2⊥x軸,垂足為點(diǎn)A2;再過(guò)點(diǎn)A2作A2A3⊥OB,垂足為點(diǎn)A3;則A2A3=;再過(guò)點(diǎn)A3作A3A4⊥x軸,垂足為點(diǎn)A4…;這樣一直作下去,則A2017的縱坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某縣為創(chuàng)建省文明衛(wèi)生城市,計(jì)劃將城市道路兩旁的人行道進(jìn)行改造,經(jīng)調(diào)查可知,若該工程由甲工程隊(duì)單獨(dú)來(lái)做恰好在規(guī)定時(shí)間內(nèi)完成;若該工程由乙工程隊(duì)單獨(dú)完成,則需要的天數(shù)是規(guī)定時(shí)間的2倍,若甲、乙兩工程隊(duì)合作6天后,余下的工程由甲工程隊(duì)單獨(dú)來(lái)做還需3天完成.
(1)問(wèn)該縣要求完成這項(xiàng)工程規(guī)定的時(shí)間是多少天?
(2)已知甲工程隊(duì)做一天需付給工資5萬(wàn)元,乙工程隊(duì)做一天需付給工資3萬(wàn)元.現(xiàn)該工程由甲、乙兩個(gè)工程隊(duì)合作完成,該縣準(zhǔn)備了工程工資款65萬(wàn)元.請(qǐng)問(wèn)該縣準(zhǔn)備的工程工資款是否夠用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將Rt△ABC沿射線BC方向平移得到△DEF,已知AB=16cm,BE=10cm,DH=6cm,則圖中陰影部分的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,若干個(gè)半徑為2個(gè)單位長(zhǎng)度,圓心角為60°的扇形組成一條連續(xù)的曲線,點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右上下起伏運(yùn)動(dòng),點(diǎn)在直線上的速度為2個(gè)單位長(zhǎng)度/秒,點(diǎn)在弧線上的速度為 個(gè)單位長(zhǎng)度/秒,則2017秒時(shí),點(diǎn)P的坐標(biāo)是( )
A.(2017,0)
B.(2017, )
C.(2017,﹣ )
D.(2016,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綠色無(wú)公害蔬菜基地有甲、乙兩種植戶,他們種植了A,B兩類蔬菜,兩種植戶種植的兩類蔬菜的種植面積與總收入如下表:
種植戶 | 種植A類蔬菜面積 | 種植B類蔬菜面積 | 總收入 |
甲 | 3 | 1 | 12500 |
乙 | 2 | 3 | 16500 |
說(shuō)明:不同種植戶種植的同類蔬菜每畝的平均收入相等;畝為土地面積單位.
(1)求A、B兩類蔬菜每畝的平均收入各是多少元;
(2)某種植戶準(zhǔn)備租20畝地用來(lái)種植A、B兩類蔬菜,為了使總收入不低于63000元,且種植A類蔬菜的面積多于種植B類蔬菜的面積(兩類蔬菜的種植面積均為整數(shù)),求該種植戶所有租地方案.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com