【題目】如圖,等腰直角三角形ABC在平面直角坐標(biāo)系中,直角邊ACx軸上,OAC的中點(diǎn),點(diǎn)A的坐標(biāo)為(1,0),將ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)135°,使斜邊AB的對(duì)應(yīng)邊A′B′x軸重合,則點(diǎn)C的對(duì)應(yīng)點(diǎn)C'的坐標(biāo)為(  )

A. 2,2B. 1+ ,C. 1+,2D. 22+

【答案】B

【解析】

根據(jù)已知條件得到AC2,根據(jù)勾股定理得到AB2,由旋轉(zhuǎn)的性質(zhì)得到A′B′AB2,過C′C′Dx軸于D,根據(jù)等腰直角三角形的性質(zhì)即可得到結(jié)論.

解:∵OAC的中點(diǎn),點(diǎn)A的坐標(biāo)為(1,0),

AC2

∵△ABC是等腰直角三角形,

AB2,

∵將ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)135°,使斜邊AB的對(duì)應(yīng)邊A′B′x軸重合,

A′B′AB2,

C′C′Dx軸于D

C′DA′DA′B′,

OD1+,

∴點(diǎn)C的對(duì)應(yīng)點(diǎn)C'的坐標(biāo)為(1+,),

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級(jí)6班的一個(gè)互助學(xué)習(xí)小組組長(zhǎng)收集并整理了組員們討論如下問題時(shí)所需的條件:如圖所示,在四邊形ABCD中,點(diǎn)E、F分別在邊BCAD上,____,求證:四邊形AECF是平行四邊形. 你能在橫線上填上最少且簡(jiǎn)捷的條件使結(jié)論成立嗎?

條件分別是:①BEDF;②∠B=∠D;③BAE=∠DCF;④四邊形ABCD是平行四邊形.

其中A、BC、D四位同學(xué)所填條件符合題目要求的是( 。

A. ①②③④B. ①②③C. ①④D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017湖北省鄂州市,第8題,3分)小東家與學(xué)校之間是一條筆直的公路,早飯后,小東步行前往學(xué)校,圖中發(fā)現(xiàn)忘帶畫板,停下給媽媽打電話,媽媽接到電話后,帶上畫板馬上趕往學(xué)校,同時(shí)小東沿原路返回,兩人相遇后,小東立即趕往學(xué)校,媽媽沿原路返回16min到家,再過5min小東到達(dá)學(xué)校,小東始終以100m/min的速度步行,小東和媽媽的距離y(單位:m)與小東打完電話后的步行時(shí)間t(單位:min)之間的函數(shù)關(guān)系如圖所示,下列四種說法:

①打電話時(shí),小東和媽媽的距離為1400米;

②小東和媽媽相遇后,媽媽回家的速度為50m/min;

③小東打完電話后,經(jīng)過27min到達(dá)學(xué)校;

④小東家離學(xué)校的距離為2900m

其中正確的個(gè)數(shù)是( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ymx+n與兩坐標(biāo)軸分別交于點(diǎn)BC,且與反比例函致yx0)圖象交于點(diǎn)A,過點(diǎn)AADx軸,垂足為D,連接DC,若BOC的面積是6,則DOC的面積是( 。

A. 52B. 5+2C. 46D. 3+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ABC45°,∠C60°,O經(jīng)過點(diǎn)A,B,與BC交于點(diǎn)D,連接AD

(Ⅰ)如圖.若ABO的直徑,交AC于點(diǎn)E,連接DE,求∠ADE的大。

(Ⅱ)如圖,若OAC相切,求∠ADC的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AC、BD交于點(diǎn)O,點(diǎn)P、E分別是直線BD、BC上的動(dòng)點(diǎn),且PEPC,過點(diǎn)EEFAC交直線BD于點(diǎn)F

1)如圖1,當(dāng)∠COD90°時(shí),BEF的形狀是   

2)如圖2,當(dāng)點(diǎn)P在線段BO上時(shí),求證:OPBF

3)當(dāng)∠COD60°、CD3時(shí),請(qǐng)直接寫出當(dāng)PEF成為直角三角形時(shí)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級(jí)男生1000米跑的水平,從中隨機(jī)抽取部分男生進(jìn)行測(cè)試,并把測(cè)試成績(jī)分為D、C、B、A四個(gè)等次繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你依圖解答下列問題:

(1)a=   ,b=   ,c=   ;

(2)扇形統(tǒng)計(jì)圖中表示C等次的扇形所對(duì)的圓心角的度數(shù)為   度;

(3)學(xué)校決定從A等次的甲、乙、丙、丁四名男生中,隨機(jī)選取兩名男生參加全市中學(xué)生1000米跑比賽,請(qǐng)用列表法或畫樹狀圖法,求甲、乙兩名男生同時(shí)被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°

1)請(qǐng)用直尺和圓規(guī)作∠ABC的平分線,交AC于點(diǎn)D(保留作圖痕跡,不要求寫作法和證明);

2)在(1)作出的圖形中,若∠A30°BC,則點(diǎn)DAB的距離等于   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BACBC于點(diǎn)D,OAB上一點(diǎn),經(jīng)過點(diǎn)A,D⊙O分別交AB,AC于點(diǎn)E,F(xiàn),連接OFAD于點(diǎn)G.

(1)求證:BC⊙O的切線;

(2)設(shè)AB=x,AF=y,試用含x,y的代數(shù)式表示線段AD的長(zhǎng);

(3)BE=8,sinB=,求DG的長(zhǎng),

查看答案和解析>>

同步練習(xí)冊(cè)答案