精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在矩形ABCD中,EAD邊的中點,BE⊥AC,垂足為點F,連接DF,下列結論:①△AEF∽△CAB;②CF=2AF;③tan∠CAD=.其中正確的結論有 ( 。

A. 3 B. 2 C. 1 D. 0

【答案】B

【解析】

①正確.只要證明∠EAC=ACB,ABC=AFE=90°即可;

②正確.由ADBC,推出AEF∽△CBF,推出,由AE=AD=BC,推出=,即CF=2AF;

④錯誤,AE=a,AB=b,則AD=2a,由BAE∽△ADC,有,即b=a,可得tanCAD==即可得.

如圖,過DDMBEACN,

∵四邊形ABCD是矩形,

ADBC,ABC=90°,AD=BC,

BEAC于點F,

∴∠EAC=ACB,ABC=AFE=90°,

∴△AEF∽△CAB,故①正確;

ADBC,

∴△AEF∽△CBF,

,

AE=AD=BC,

=,

CF=2AF,故②正確;

AE=a,AB=b,則AD=2a,

BAE∽△ADC,有

,即b=a,

tanCAD===,故③錯誤,

所以正確的有2個,

故選B.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某小區(qū)積極創(chuàng)建環(huán)保示范社區(qū),決定在小區(qū)內安裝垃圾分類的溫馨提示牌和垃圾箱,已知溫馨提示牌的單價為每個30元,垃圾箱的單價為每個90元,共需購買溫馨提示牌和垃圾箱共100個.

(1)若規(guī)定溫馨提示牌和垃圾箱的個數之比為1:4,求所需的購買費用;

(2)若該小區(qū)至多安放48個溫馨提示牌,且費用不超過6300元,請列舉所有購買方案,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知B港口位于A觀測點北偏東45°方向,且其到A觀測點正北風向的距離BM的長為10km,一艘貨輪從B港口沿如圖所示的BC方向航行4km到達C處,測得C處位于A觀測點北偏東75°方向,則此時貨輪與A觀測點之間的距離AC的長為( )km.

A.8 B.9 C.6 D.7

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某游泳館推出了兩種收費方式.

方式一:顧客先購買會員卡,每張會員卡200元,僅限本人一年內使用,憑卡游泳,每次游泳再付費30元.

方式二:顧客不購買會員卡,每次游泳付費40元.

設小亮在一年內來此游泳館的次數為x次,選擇方式一的總費用為y1(元),選擇方式二的總費用為y2(元).

1)請分別寫出y1,y2x之間的函數表達式.

2)若小亮一年內來此游泳館的次數為15次,選擇哪種方式比較劃算?

3)若小亮計劃拿出1400元用于在此游泳館游泳,采用哪種付費方式更劃算?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場今年2月份的營業(yè)額為400萬元,3月份的營業(yè)額比2月份增加10%,5月份的營業(yè)額達到633.6萬元.求3月份到5月份營業(yè)額的月平均增長率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的頂點坐標分別為A(-51),B(-11),C(-4,3).

1)若A1B1C1ABC關于y軸對稱,點A,BC的對應點分別為A1,B1C1,請畫出A1B1C1并寫出A1B1C1的坐標;

2)若點P為平面內不與C重合的一點,PABABC全等,請寫出點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD⊥BCCE⊥AB,AE=CE.求證:

1△AEF≌△CEB;

2AF=2CD

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABDC中,∠D=B=90°,點OBD的中點,且AO平分∠BAC.

(1)求證:CO平分∠ACD;

(2)求證:OAOC;

(3)求證:AB+CD=AC.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為加強中小學生安全教育,某校組織了“防溺水”知識競賽,對表現優(yōu)異的班級進行獎勵,學校購買了若干副乒乓球拍和羽毛球拍購買2副乒乓球拍和1副羽毛球拍共需116元;購買3副乒乓球拍和2副羽毛球拍共需204元.

求購買1副乒乓球拍和1副羽毛球拍各需多少元;

若學校購買乒乓球拍和羽毛球拍共30副,且支出不超過1480元,則最多能夠購買多少副羽毛球拍?

查看答案和解析>>

同步練習冊答案