【題目】如圖,直線l1y=2x+1與直線l2y=mx+4相交于點(diǎn)P1,b

(1)b,m的值

(2)垂直于x軸的直線x=a與直線l1,l2分別相交于C,D,若線段CD長(zhǎng)為2,求a的值

【答案】(1)-1;(2).

【解析】試題分析:(1)由點(diǎn)P1b)在直線l1上,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,即可求出b值,再將點(diǎn)P的坐標(biāo)代入直線l2中,即可求出m值;

2)由點(diǎn)C、D的橫坐標(biāo),即可得出點(diǎn)C、D的縱坐標(biāo),結(jié)合CD=2即可得出關(guān)于a的含絕對(duì)值符號(hào)的一元一次方程,解之即可得出結(jié)論.

試題解析:(1點(diǎn)P1,b)在直線l1y=2x+1上,∴b=2×1+1=3;

點(diǎn)P1,3)在直線l2y=mx+4上,∴3=m+4,∴m=﹣1

2)當(dāng)x=a時(shí),yC=2a+1;

當(dāng)x=a時(shí),yD=4﹣a

∵CD=2,∴|2a+1﹣4﹣a|=2,解得:a=a=,∴a=a=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)為數(shù)軸上的兩點(diǎn),點(diǎn)對(duì)應(yīng)的數(shù)為,點(diǎn)對(duì)應(yīng)的數(shù)為3,

(1)兩點(diǎn)之間的距離;

(2)若點(diǎn)為數(shù)軸上的一個(gè)動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)記為,試猜想當(dāng)滿足什么條件時(shí),點(diǎn)點(diǎn)的距離與點(diǎn)點(diǎn)的距離之和最。(qǐng)寫出你的猜想,并說(shuō)明理由:

(3)若為數(shù)軸上的兩個(gè)動(dòng)點(diǎn)(點(diǎn)在點(diǎn)右側(cè)), 兩點(diǎn)之間的距離為,當(dāng)點(diǎn)到A點(diǎn)的距離與點(diǎn)點(diǎn)的距離之和有最小值4時(shí),的值為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖:點(diǎn)(1,3)在函數(shù)y=(x>0)的圖象上,矩形ABCD的邊BCx軸上,E是對(duì)角線BD的中點(diǎn),函數(shù)y=(x>0)的圖象又經(jīng)過(guò)A、E兩點(diǎn),點(diǎn)E的橫坐標(biāo)為m,解答下列問(wèn)題:

(1)k的值;

(2)求點(diǎn)A的坐標(biāo);(用含m代數(shù)式表示)

(3)當(dāng)∠ABD=45°時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,為測(cè)量旗臺(tái)A與圖書館C之間的直線距離,小明在A處測(cè)得C在北偏東30°方向上,然后向正東方向前進(jìn)100米至B處,測(cè)得此時(shí)C在北偏西15°方向上,求旗臺(tái)與圖書館之間的距離.(結(jié)果精確到1米,參考數(shù)據(jù)≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù).

(1)滿足何條件時(shí),yx的增大而減;

(2)滿足何條件時(shí),圖像經(jīng)過(guò)第一、二、四象限;

(3)滿足何條件時(shí),它的圖像與y軸的交點(diǎn)在x軸的上方.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程

(1)2x2-4x-10=0 (用配方法)

(2)2x2+3x=4(公式法)

(3)(x-2)2=2(x-2)

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是用棋子擺成的字:如果按照以上規(guī)律繼續(xù)擺下去,那么通過(guò)觀察,可以發(fā)現(xiàn):第20個(gè)字需用多少枚棋子( 。

A. 78 B. 82 C. 86 D. 90

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為正方形,HAD上任意一點(diǎn),連接CH,過(guò)BBMCHM,交ACF,過(guò)DDEBMACE,交CHG,在線段BF上作PF=DG,連接PG,BE,其中PGACN點(diǎn),KBE上一點(diǎn),連接PK,KG,若∠BPK=GPK,CG=12,KP:EF=3:5,求 的值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了促進(jìn)學(xué)生多樣化發(fā)展,某校組織開展了社團(tuán)活動(dòng),分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(tuán)(要求人人參與社團(tuán),每人只能選擇一項(xiàng)).為了解學(xué)生喜愛哪種社團(tuán)活動(dòng),學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息,完成下列問(wèn)題:

(1)此次共調(diào)查了多少人?

(2)求文學(xué)社團(tuán)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);

(3)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(4)若該校有1500名學(xué)生,請(qǐng)估計(jì)喜歡體育類社團(tuán)的學(xué)生有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案