【題目】如圖,矩形ABCD中,AB=BC=12,EAD中點,FAB上一點,將△AEF沿EF折疊后,點A恰好落到CF上的點G處,則折痕EF的長是_______ .

【答案】

【解析】

連接EC,利用矩形的性質(zhì),求出EG,DE的長度,證明EC平分∠DCF,再證∠FEC=90°,最后證△FEC∽△EDC,利用相似的性質(zhì)即可求出EF的長度.

解:如圖,連接EC,

∵四邊形ABCD為矩形,
∴∠A=D=90°,BC=AD=12,DC=AB=

EAD中點,
AE=DE=

由翻折知,△AEF≌△GEF
AE=GE=6,∠AEF=GEF,∠EGF=EAF=90°=D,
GE=DE,
EC平分∠DCG
∴∠DCE=GCE,
∵∠GEC=90°-GCE,∠DEC=90°-DCE,
∴∠GEC=DEC
∴∠FEC=FEG+GEC= ×180°=90°,
∴∠FEC=D=90°
又∵∠DCE=GCE,
∴△FEC∽△EDC,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】節(jié)假日期間向、某商場組織游戲,主持人請三位家長分別帶自己的孩于參加游戲,A、B、C分別表示一位家長,他們的孩子分別對應(yīng)的是a,b若主持人分別從三位家長和三位孩予中各選一人參加游戲.

若已選中家長A,則恰好選中自己孩子的概率是______

請用畫樹狀圖或列表法求出被選中的恰好是同一家庭成員的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊ABC中,AB,3BP4CP,∠BPC120°,那么線段AP的長度是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】密閉容器內(nèi)有一定質(zhì)量的二氧化碳,當(dāng)容器的體積V(單位:m3)變化時,氣體的密度ρ(單位:kg/m3)隨之變化,已知密度ρ與體積V是反比例函數(shù)關(guān)系,它的圖象如圖所示.

1)求密度ρ關(guān)于體積V的函數(shù)解析式;

2)當(dāng)密度ρ不低于4kg/m3時,求二氧化碳體積的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“測量物體的高度” 活動中,某數(shù)學(xué)興趣小組的3名同學(xué)選擇了測量學(xué)校里的棵樹的高度.在同一時刻的陽光下他們分別做了以下工作:

小芳:測得一根長為1米的竹竿的影長為0.8米,甲樹的影長為4米如圖1

小華:發(fā)現(xiàn)乙樹的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上如圖2),墻壁上的影長為1.2米,落在地面上的影長為2.4米

小麗:測量的丙樹的影子除落在地面上外,還有一部分落在教學(xué)樓的第一級臺階上如圖3),測得此影子長為0.3米,一級臺階高為0.3米,落在地面上的影長為4.5米

1在橫線上直接填寫甲樹的高度為 米.

2求出乙樹的高度.

3請選擇丙樹的高度為( )

A、6.5米 B、5. 5米 C、6.3米 D、4.9米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鮮豐水果店計劃用/盒的進價購進一款水果禮盒以備銷售.

據(jù)調(diào)查,當(dāng)該種水果禮盒的售價為/盒時,月銷量為盒,每盒售價每增長元,月銷量就相應(yīng)減少盒,若使水果禮盒的月銷量不低于盒,每盒售價應(yīng)不高于多少元?

在實際銷售時,由于天氣和運輸?shù)脑颍亢兴Y盒的進價提高了,而每盒水果禮盒的售價比(1)中最高售價減少了,月銷量比(1)中最低月銷量盒增加了,結(jié)果該月水果店銷售該水果禮盒的利潤達(dá)到了元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國務(wù)院辦公廳在2015316日發(fā)布了《中國足球發(fā)展改革總體方案》,這是中國足球史上的重大改革,為進一步普及足球知識,傳播足球文化,我市某區(qū)在中小學(xué)舉行了足球在身邊知識競賽,各類獲獎學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎的學(xué)生共50名,請結(jié)合圖中信息,解答下列問題:

1)獲得一等獎的學(xué)生人數(shù);

2)在本次知識競賽活動中,A,BC,D四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機選取兩所學(xué)校舉行一場足球友誼賽,請用畫樹狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以O為圓心作⊙Ox軸正半軸于A,P為⊙O上的動點(P不在坐標(biāo)軸上),過點PPCx軸,PDy軸于點C、D,BCD中點,連接AB則∠BAO的最大值是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為坐標(biāo)原點,點Bx軸的正半軸上,四邊形OACB是平行四邊形,sin∠AOB=,反比例函數(shù)y=k0)在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F

1)若OA=10,求反比例函數(shù)解析式;

2)若點FBC的中點,且△AOF的面積S=12,求OA的長和點C的坐標(biāo);

3)在(2)中的條件下,過點FEF∥OB,交OA于點E(如圖),點P為直線EF上的一個動點,連接PAPO.是否存在這樣的點P,使以P、O、A為頂點的三角形是直角三角形?若存在,請直接寫出所有點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案